

Compactness of the Weyl operator in \mathcal{S}_ω

17 Jun
12:25

Alessandro Oliaro

Department of Mathematics, University of Torino

In this talk we study the classical Weyl operator in the frame of spaces of ultra-differentiable rapidly decreasing functions $\mathcal{S}_\omega(\mathbb{R}^d)$, where ω is a (non-quasianalytic) weight function in the sense of Braun-Meise-Taylor. For $a \in \mathcal{S}'_\omega(\mathbb{R}^{2d})$, the Weyl operator $a^w(x, D)$ with symbol a applied to $f \in \mathcal{S}_\omega(\mathbb{R}^d)$ is the distribution defined by

$$\langle a^w(x, D)f, g \rangle = (2\pi)^{-d} \langle a, \text{Wig}(g, f) \rangle, \quad g \in \mathcal{S}_\omega(\mathbb{R}^d),$$

where $\text{Wig}(g, f) = \int_{\mathbb{R}^d} e^{-iy\xi} g(x + y/2) \overline{f(x - y/2)} dy$ is the Wigner transform of g and f . We characterize, using techniques from time-frequency analysis, continuity and compactness of the Weyl operator

$$a^w(x, D) : \mathcal{S}_\omega(\mathbb{R}^d) \rightarrow \mathcal{S}_\omega(\mathbb{R}^d)$$

in terms of the short-time Fourier transform of the symbol a . As a consequence, we give results about the compactness of the localization operator in \mathcal{S}_ω , in relation with the spaces of ω -multipliers and ω -convolutors of \mathcal{S}_ω .

The talk is based on a collaboration with V. Asensio, C. Boiti, and D. Jornet, cf. [1].

References

-
- [1] V. Asensio, C. Boiti, D. Jornet, A. Oliaro, On the compactness of the Weyl operator in \mathcal{S}_ω , *J. Math. Anal. Appl.*, **546** (2025), 129214.