

A Jubilee Theorem for Pepe Bonet

17 Jun
17:20

José Orihuela

Universidad de Murcia

We shall provide a precise answer to Lindenstrauss' Question 18 in [4]. Moreover, the Banach space E admits an equivalent LUR norm on any subset of S_E contained in a family \mathcal{F} of $\sigma(E, E^*)$ -compact and separable faces such that

$$\mathcal{F} = \bigcup_{n=1}^{\infty} \mathcal{F}_n$$

where every one of the families \mathcal{F}_n is a subfamily of disjoint faces. Completely new results are obtained when compactness is replaced by a new condition in terms of pressing down on separable faces without touching disjoint ones, i.e. what we call to have a perfectly pumped ball with separable faces is going to characterize the fact to have an equivalent LUR norm.

For a Banach space E with a Fréchet differentiable norm we shall deal with the existence of an equivalent LUR norm which will provide us our Jubilee Theorem for Pepe.

This is a joint research with Vicente Montesinos.

References

- [1] R. Deville, G. Godefroy, and V. Zizler. *Smoothness and renormings in Banach spaces*, Volume 64 of *Pitman Monographs and Surveys in Pure and Applied Mathematics*. Longman Scientific & Technical, Harlow, 1993.
- [2] M. Fabian, P. Habala, P. Hájek, V. Montesinos and V. Zizler. *Banach Space Theory. The Basis for Linear and Nonlinear Analysis*, CMS Books in Mathematics/Canadian Mathematical Society. Springer-Verlag, New York, 2010.
- [3] A. J. Guirao, V. Montesinos, and V. Zizler. Renormings in Banach Spaces. A Toolbox. Monografie Matematyczne. Vol 75, Birkhauser, 2022.
- [4] J. Lindenstrauss. Some open problems in Banach space theory. In *Séminaire Choquet. Initiation à l'analyse tome 15, 1975-1976, Exp. No. 18, 1-9*. Secrétariat mathématique, Paris, 1975-76.
- [5] V. Zizler. Nonseparable Banach spaces. In *Handbook of the Geometry of Banach spaces vol. 2*, 1745–1816. Elsevier Science B. V., 2003.