

*International Workshop on Functional Analysis
On the Occasion of the 70th Birthday of José Bonet
17-19 June 2025, Valencia, Spain*

Can we detect quasicrystals using time-frequency distributions?

Paolo Boggiatto, University of Torino, Italy

joint work with
Antonio Galbis, Carmen Fernandez, Univ. of Valencia
and Alessandro Oliaro, Univ. of Torino

PLAN OF THE TALK

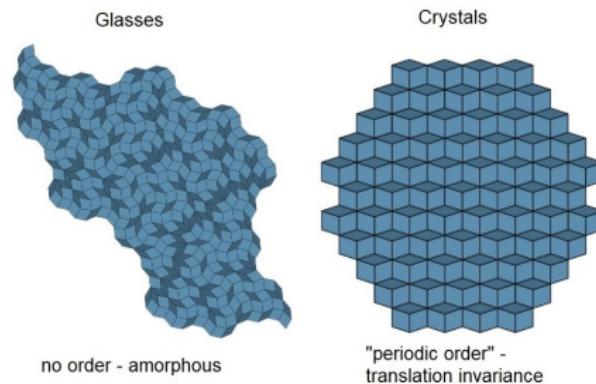
- 1 AN INTRIGUING HISTORY...
- 2 FOURIER QUASICRYSTALS
- 3 WIGNER TRANSFORMS AND QUASICRYSTALS
- 4 MATRIX-WIGNER TRANSFORMS

AN INTRIGUING HISTORY...

WHAT IS A QUASICRYSTAL?

In mineralogy:

- Till the 80's: solid state matter in 2 forms, unordered and ordered (crystals)



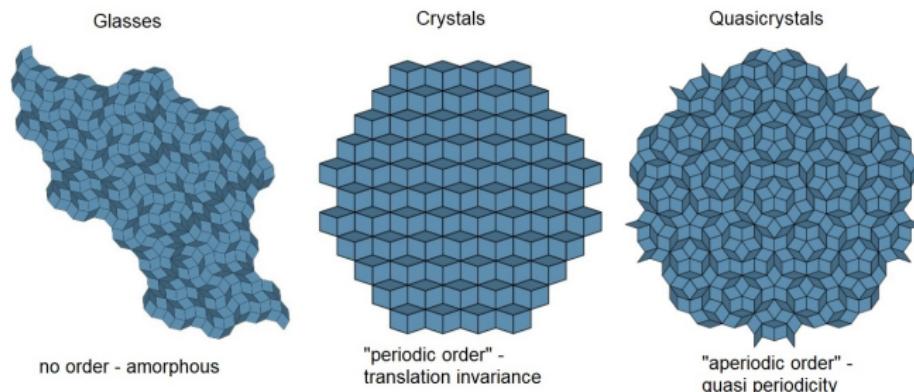
<https://matmatch.com/resources/blog/quasicrystals-materials-that-should-not-exist/>

AN INTRIGUING HISTORY...

WHAT IS A QUASICRYSTAL?

In mineralogy:

- Till the 80's: solid state matter in 2 forms, unordered and ordered (crystals)
- 1982: Daniel Schechtman discovers an aluminium-manganese alloy with prohibited diffraction patterns. Though initially contrasted, wins the Nobel Prize in 2011.



<https://matmatch.com/resources/blog/quasicrystals-materials-that-should-not-exist/>

AN INTRIGUING HISTORY...

Found in nature? Yes!

AN INTRIGUING HISTORY...

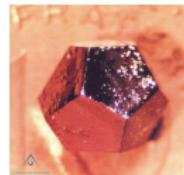
Found in nature? Yes!

- material from liquefaction of sand after the first atomic explosion in New Mexico

AN INTRIGUING HISTORY...

Found in nature? Yes!

- material from liquefaction of sand after the first atomic explosion in New Mexico
- meteorite in Kamchatka peninsula (Bindi-Steinhardt expedition 2011)



Koryak Mountains - Kamchatka Peninsula
Bindi-Steinhardt expedition 2011

Many have contributed to a mathematical theory of quasicrystals:

- R. Penrose, Y. Meyer (1970) (preceding Schechtman discovery!),
- A. Cordoba (1989),
- Kolountzakis (1996)
- Lagarias (1996),
- S. Yu. Favorov (2016)
- V.P. Palamodov (2017)
- P. Kurasov and P. Sarnak (2020)
- ...and others

FOURIER QUASICRYSTALS

Tilings by "Cut and Project" method: **Fibonacci Quasicrystal**, a 1-dimensional model

S = small rabbit **L** = large rabbit

n. rabbits

1 S

1 L

3 LS

3 LSL

5 LSLLS

8 LSLLSLSL

13 LSLLSLSLSSL

etc.

substitution rule:

$S \Rightarrow L$

$L \Rightarrow LS$

(or concatenation)

FOURIER QUASICRYSTALS

Tilings by "Cut and Project" method: **Fibonacci Quasicrystal**, a 1-dimensional model

S = small rabbit **L** = large rabbit

n. rabbits

1 S

substitution rule:

$S \Rightarrow L$

$L \Rightarrow LS$

(or concatenation)

1 L

3 LS

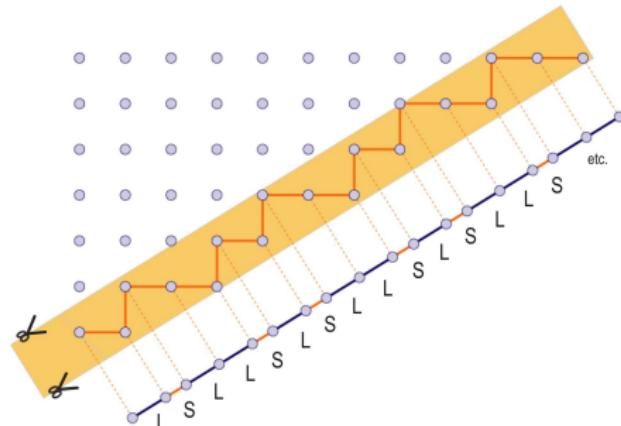
3 LSL

5 LSLLS

8 LSLLSLSL

13 LSLLSLSLLSLLS

etc.



Strip of irrational slope $\frac{1}{\tau}$ and width $\frac{1+\tau}{\sqrt{2+\tau}}$

$(\tau = \frac{1+\sqrt{5}}{2}$ "golden section")

FOURIER QUASICRYSTALS

Tilings by "Cut and Project" method: **Fibonacci Quasicrystal**, a 1-dimensional model

S = small rabbit L = large rabbit

n. rabbits

1 S

substitution rule:

$S \Rightarrow L$

$L \Rightarrow LS$

(or concatenation)

1 L

3 LS

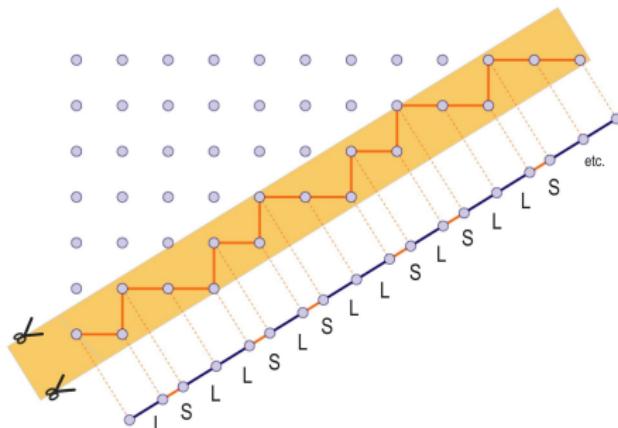
3 LSL

5 LSLLS

8 LSLLSLSL

13 LSLLSLSLSSL

etc.



Strip of irrational slope $\frac{1}{\tau}$ and width $\frac{1+\tau}{\sqrt{2+\tau}}$

$(\tau = \frac{1+\sqrt{5}}{2}$ "golden section")

This method, which can be abstractly formalized, leads to distributions of the type

$$\mu = \sum_{\lambda \in \Lambda} a_{\lambda} \delta_{\lambda}$$

where Λ is in some sense a "quasi-periodic" discrete set, and with Fourier transform of the same type.

FOURIER QUASICRYSTALS

There is not a univocal definition of *quasicrystals*, we focus on that of *Fourier quasicrystals* ...even for the definition of Fourier quasicrystals there is not a perfect agreement, however usually the following is assumed (Lev, Olevskii):

Fourier quasicrystals

A tempered distribution $\mu \in \mathcal{S}'(\mathbb{R}^d)$ is called *Fourier quasicrystal* if μ and $\widehat{\mu}$ are of the form

$$\mu = \sum_{\lambda \in \Lambda} a_\lambda \delta_\lambda, \quad \widehat{\mu} = \sum_{s \in S} b_s \delta_s,$$

where Λ and S are discrete subsets of \mathbb{R}^d , and δ_ξ is the mass point at ξ . Λ and S are called respectively *support* and *spectrum* of μ .

FOURIER QUASICRYSTALS

There is not a univocal definition of *quasicrystals*, we focus on that of *Fourier quasicrystals* ...even for the definition of Fourier quasicrystals there is not a perfect agreement, however usually the following is assumed (Lev, Olevskii):

Fourier quasicrystals

A tempered distribution $\mu \in \mathcal{S}'(\mathbb{R}^d)$ is called *Fourier quasicrystal* if μ and $\widehat{\mu}$ are of the form

$$\mu = \sum_{\lambda \in \Lambda} a_{\lambda} \delta_{\lambda}, \quad \widehat{\mu} = \sum_{s \in S} b_s \delta_s,$$

where Λ and S are discrete subsets of \mathbb{R}^d , and δ_{ξ} is the mass point at ξ . Λ and S are called respectively *support* and *spectrum* of μ .

Basic examples: Dirac combs

Let $L = A(\mathbb{Z}^d)$ be a full-rank lattice (i.e. the matrix A is non-degenerate), and let $L^* = \{\lambda^* \in \mathbb{R}^d : \langle \lambda^*, \lambda \rangle \in \mathbb{Z}\}$ the *dual* lattice. Then for the *Dirac comb* $\delta_L = \sum_{\lambda \in L} \delta_{\lambda}$ we have $\widehat{\delta_L} = \frac{1}{\det A} \delta_{L^*}$.

Clearly Dirac combs have a well-defined periodic structure.

Question (Lagarias 2000): is “part of this structure in some sense” also present in Fourier quasicrystals?

Clearly Dirac combs have a well-defined periodic structure.

Question (Lagarias 2000): is “part of this structure in some sense” also present in Fourier quasicrystals?

Answer (Lev, Olevskii 2015 and 2016): one “positive”, and one “negative” result.

Definition

A set $A \subset \mathbb{R}^d$ is said to be *uniformly discrete* (u.d.) if there is $\delta > 0$ such that $|r - s| \geq \delta$ whenever $s, r \in A, s \neq r$.

Theorem (“positive”) (N. Lev, A. Olevskii, (Inventiones Math. 2015))

If a measure μ on \mathbb{R}^d (which is assumed to be positive in the case $d > 1$) is a Fourier quasicrystal and both the support and the spectrum of μ are u.d. then there are a lattice L on \mathbb{R}^d , vectors $\theta_j \in \mathbb{R}^d$ and trigonometric polynomials P_j ($1 \leq j \leq N$) such that

$$\mu = \sum_{j=1}^N \sum_{\lambda \in L + \theta_j} P_j(\lambda) \delta_\lambda. \quad (1)$$

The same holds for $\widehat{\mu}$ (with the dual lattice).

Remark

REMARK: the previous theorem shows that μ is a sum of translations and modulations of the Dirac delta. Viceversa any tempered distribution of the type (1) has both u.d. support and spectrum.

Note that the “quasi-periodicity” of μ is only due to the polynomials

$$P_j(x) = \sum_{k=-N_j}^{N_j} a_k^{(j)} e^{2\pi i \omega_k^{(j)} x}.$$

Remark

REMARK: the previous theorem shows that μ is a sum of translations and modulations of the Dirac delta. Viceversa any tempered distribution of the type (1) has both u.d. support and spectrum.

Note that the "quasi-periodicity" of μ is only due to the polynomials

$$P_j(x) = \sum_{k=-N_j}^{N_j} a_k^{(j)} e^{2\pi i \omega_k^{(j)} x}.$$

Another "positive" result:

Theorem (V.P. Palamodov, (JFAA 2017))

Suppose that $0 \neq \mu \in \mathcal{S}'(\mathbb{R}^d)$ has support Λ and spectrum Σ such that $\Lambda - \Lambda$ and $\Sigma - \Sigma$ are discrete and (at least) one of them is u.d. Then for μ and $\widehat{\mu}$ the same conclusion holds as in the previous theorem

The uniform discreteness of the support and the spectrum of μ in the previous theorem is essential as proved by the following:

Theorem ("negative") (N. Lev, A. Olevskii (Rev. Mat. Iberoam. 2016))

There exists a Fourier quasicrystal $\mu = \sum_{\lambda \in \Lambda} a_\lambda \delta_\lambda$ with $\widehat{\mu} = \sum_{s \in S} b_s \delta_s$ such that Λ and S are discrete closed sets, but Λ contains only finitely many elements of any arithmetic progression. The construction can easily be extended to $n > 1$.

It follows that $\text{supp } \mu$ can not contain any lattice and in this sense μ is somehow "far away" from being periodic.

WIGNER TRANSFORMS AND QUASICRYSTALS

In view of the symmetric conditions on μ and $\hat{\mu}$ in the definition of Fourier quasicrystals, it seems reasonable that some information about the quasi-periodic structure of μ can be deduced from the knowledge of its time-frequency distribution. We consider the Wigner transform

WIGNER TRANSFORMS AND QUASICRYSTALS

In view of the symmetric conditions on μ and $\widehat{\mu}$ in the definition of Fourier quasicrystals, it seems reasonable that some information about the quasi-periodic structure of μ can be deduced from the knowledge of its time-frequency distribution.

We consider the Wigner transform

The cross-Wigner distribution of function or distributions f, g on \mathbb{R}^d is

$$W(f, g)(x, \omega) = \int_{\mathbb{R}^d} f(x + \frac{t}{2}) \overline{g(x - \frac{t}{2})} e^{-2\pi i \omega t} dt, \quad x, \omega \in \mathbb{R}^d.$$

It defines sesquilinear maps in the functional settings:

$$W : \mathcal{S}(\mathbb{R}^d) \times \mathcal{S}(\mathbb{R}^d) \longrightarrow \mathcal{S}(\mathbb{R}^{2d})$$

$$W : L^2(\mathbb{R}^d) \times L^2(\mathbb{R}^d) \longrightarrow L^2(\mathbb{R}^{2d})$$

$$W : \mathcal{S}'(\mathbb{R}^d) \times \mathcal{S}'(\mathbb{R}^d) \longrightarrow \mathcal{S}'(\mathbb{R}^{2d}) \quad (\dots \text{and many others})$$

The Wigner transform of f is $W(f) := W(f, f)$

$W(f)$ is a quadratic representation of the signal f giving information about the energy of the signal f with respect to both time and frequency.

An negative but interesting start...

The most natural condition is to consider the case when $W(\mu)$ is supported on a u. d. set of \mathbb{R}^{2d} . However, due to the interaction between the Wigner distribution and the metaplectic operators, from this fact we cannot even deduce that the support of μ is discrete.

An negative but interesting start...

The most natural condition is to consider the case when $W(\mu)$ is supported on a u. d. set of \mathbb{R}^{2d} . However, due to the interaction between the Wigner distribution and the metaplectic operators, from this fact we cannot even deduce that the support of μ is discrete.

Actually, to every symplectic matrix $A \in \mathrm{Sp}(2, \mathbb{R})$ let T_A be a unitary operator acting on $L^2(\mathbb{R})$ such that

$$W(T_A f, T_A g)(z) = W(f, g)(A^* z) \quad \forall z = (x, \omega) \in \mathbb{R}^2. \quad (2)$$

T_A extends to an isomorphism on $\mathcal{S}'(\mathbb{R})$, and (2) holds for $f, g \in \mathcal{S}'(\mathbb{R})$.

An negative but interesting start...

The most natural condition is to consider the case when $W(\mu)$ is supported on a u. d. set of \mathbb{R}^{2d} . However, due to the interaction between the Wigner distribution and the metaplectic operators, from this fact we cannot even deduce that the support of μ is discrete.

Actually, to every symplectic matrix $A \in \mathrm{Sp}(2, \mathbb{R})$ let T_A be a unitary operator acting on $L^2(\mathbb{R})$ such that

$$W(T_A f, T_A g)(z) = W(f, g)(A^* z) \quad \forall z = (x, \omega) \in \mathbb{R}^2. \quad (2)$$

T_A extends to an isomorphism on $\mathcal{S}'(\mathbb{R})$, and (2) holds for $f, g \in \mathcal{S}'(\mathbb{R})$.

Example (P.B., C. Fernandez, A. Galbis, A. Oliaro, (JFA 2022))

Let us consider $f = g = \mu = \sum_{n \in \mathbb{Z}} \delta_n$ (the usual Dirac comb):

When

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad \theta \in (-\pi, \pi)$$

T_A is the fractional Fourier transform \mathcal{F}^α , where $\alpha = \frac{2}{\pi} \theta \in (-2, 2)$. In this case $W(\mu)(z)$ is a well-known distribution with u.d. support and $W(T_A \mu)(z) = W(\mu)(A^* z)$ is a rotation of $W(\mu)$ hence also supported on a u.d. set of \mathbb{R}^2 . However for a suitable choice of θ we have $\mathrm{supp} T_A \mu = \mathbb{R}$

We have therefore to assume more restrictive conditions on the support of $W\mu$: our assumption will be that $\mu \in \mathcal{S}'(\mathbb{R}^d)$ has Wigner transform $W(\mu)$ supported on the product of two uniformly discrete subsets of \mathbb{R}^d .

We have therefore to assume more restrictive conditions on the support of $W\mu$: our assumption will be that $\mu \in \mathcal{S}'(\mathbb{R}^d)$ has Wigner transform $W(\mu)$ supported on the product of two uniformly discrete subsets of \mathbb{R}^d .

Our result is the following

Theorem (P.B., C. Fernandez, A. Galbis, A. Oliaro, (JFA 2022))

(*)

Let $\mu \in \mathcal{S}'(\mathbb{R}^d)$ satisfy $W(\mu) = \sum_{(r,s) \in A \times B} c_{r,s} \delta_{(r,s)}$ where A, B are uniformly discrete sets in \mathbb{R}^d . Then μ and $\widehat{\mu}$ are measures with supports contained in A and B respectively, i.e. μ is a quasicrystal with u.d. support and spectrum.

By the Lev-Olevskii and Palamodov “positive” results we have then

$$\mu = \sum_{j=1}^N \sum_{\lambda \in L + \theta_j} P_j(\lambda) \delta_\lambda,$$

the same holds for $\widehat{\mu}$.

Lemma

Let $\mu \in \mathcal{S}'(\mathbb{R}^d)$ satisfy $W(\mu) = \sum_{(r,s) \in A \times B} c_{r,s} \delta_{(r,s)}$ where A, B are u.d. sets. Then $\text{supp } \mu \subset A$ and $\text{supp } \widehat{\mu} \subset B$.

Moreover, $\frac{r_1+r_2}{2} \in A$ for any $r_1, r_2 \in \text{supp } \mu$, and similarly $\frac{s_1+s_2}{2} \in B$ for any $s_1, s_2 \in \text{supp } \widehat{\mu}$

Lemma

Let $\mu \in \mathcal{S}'(\mathbb{R}^d)$ satisfy $W(\mu) = \sum_{(r,s) \in A \times B} c_{r,s} \delta_{(r,s)}$ where A, B are u.d. sets. Then $\text{supp } \mu \subset A$ and $\text{supp } \widehat{\mu} \subset B$.

Moreover, $\frac{r_1+r_2}{2} \in A$ for any $r_1, r_2 \in \text{supp } \mu$, and similarly $\frac{s_1+s_2}{2} \in B$ for any $s_1, s_2 \in \text{supp } \widehat{\mu}$

Remark

Note that the inclusions obtained above go into the “opposite” direction with respect to classical inclusions

$$\Pi_1(\text{supp } W\mu) \subseteq H(\text{supp } \mu), \quad \Pi_2(\text{supp } W\mu) \subseteq H(\text{supp } \widehat{\mu})$$

where Π_j are the projections from $\mathbb{R}^d \times \mathbb{R}^d$ onto the first and second factor, and H indicates the convex hall of a set.

Idea of the proof of Theorem (*) in dimension $d = 1$:

- As $\mu \in \mathcal{S}'(\mathbb{R}^d)$ it is of finite order, and from the previous Lemma $\text{supp } \mu \subseteq A$ which is u.d., therefore, by the structure theorem, there exists $N \in \mathbb{N}$ such that

$$\mu = \sum_{r \in \text{supp } \mu} \sum_{j=0}^N a_r^j \delta_r^{(j)},$$

with $a_r^j \in \mathbb{C}$. We assume $N \geq 1$ and want to show that $a_r^N = 0$ for all $r \in \text{supp } \mu$.

Idea of the proof of Theorem (*) in dimension $d = 1$:

- As $\mu \in \mathcal{S}'(\mathbb{R}^d)$ it is of finite order, and from the previous Lemma $\text{supp } \mu \subseteq A$ which is u.d., therefore, by the structure theorem, there exists $N \in \mathbb{N}$ such that

$$\mu = \sum_{r \in \text{supp } \mu} \sum_{j=0}^N a_r^j \delta_r^{(j)},$$

with $a_r^j \in \mathbb{C}$. We assume $N \geq 1$ and want to show that $a_r^N = 0$ for all $r \in \text{supp } \mu$.

- For $\phi_1, \phi_2 \in \mathcal{S}(\mathbb{R})$ we explicitly compute $\langle W(\mu), \phi_1 \otimes \phi_2 \rangle$

Idea of the proof of Theorem (*) in dimension $d = 1$:

- As $\mu \in \mathcal{S}'(\mathbb{R}^d)$ it is of finite order, and from the previous Lemma $\text{supp } \mu \subseteq A$ which is u.d., therefore, by the structure theorem, there exists $N \in \mathbb{N}$ such that

$$\mu = \sum_{r \in \text{supp } \mu} \sum_{j=0}^N a_r^j \delta_r^{(j)},$$

with $a_r^j \in \mathbb{C}$. We assume $N \geq 1$ and want to show that $a_r^N = 0$ for all $r \in \text{supp } \mu$.

- For $\phi_1, \phi_2 \in \mathcal{S}(\mathbb{R})$ we explicitly compute $\langle W(\mu), \phi_1 \otimes \phi_2 \rangle$
- We use now the uniform discreteness: For each $r_0 \in \text{supp } \mu$ we set $\phi_1(x) = \psi(t(x - r_0))$, with $t > 1$, and for suitably localized ψ we get

$$t^{2N} \left| \sum_{(r,s) \in D(r_0)} \overline{a_r^N} a_s^N \widehat{\phi_2}(r - s) \right| \leq C \|\psi\|_\infty \|\phi_2\|_\infty,$$

with $D(r_0) = \{(r, s) \in \text{supp } \mu : \frac{r+s}{2} = r_0\}$

- For $t \rightarrow \infty$ we get $\sum_{(r,s) \in D(r_0)} \overline{a_r^N} a_s^N \widehat{\phi_2}(r-s) = 0$ for every $\phi_2 \in \mathcal{D}(\mathbb{R})$.

- For $t \rightarrow \infty$ we get $\sum_{(r,s) \in D(r_0)} \overline{a_r^N} a_s^N \widehat{\phi_2}(r-s) = 0$ for every $\phi_2 \in \mathcal{D}(\mathbb{R})$.
- The distribution $\phi \rightarrow \sum_{(r,s) \in D(r_0)} \overline{a_r^N} a_s^N \widehat{\phi}(r-s)$ is then null, and suitably localizing ϕ in a neighborhood of the origin we get $a_{r_0}^N = 0$.

- For $t \rightarrow \infty$ we get $\sum_{(r,s) \in D(r_0)} \overline{a_r^N} a_s^N \widehat{\phi_2}(r-s) = 0$ for every $\phi_2 \in \mathcal{D}(\mathbb{R})$.
- The distribution $\phi \rightarrow \sum_{(r,s) \in D(r_0)} \overline{a_r^N} a_s^N \widehat{\phi}(r-s)$ is then null, and suitably localizing ϕ in a neighborhood of the origin we get $a_{r_0}^N = 0$.
- Proceeding by recurrence, we get that $a_r^j = 0$ for all $r \in D$ whenever $j \geq 1$, proving that μ is the measure as claimed.

- For $t \rightarrow \infty$ we get $\sum_{(r,s) \in D(r_0)} \overline{a_r^N} a_s^N \widehat{\phi_2}(r-s) = 0$ for every $\phi_2 \in \mathcal{D}(\mathbb{R})$.
- The distribution $\phi \rightarrow \sum_{(r,s) \in D(r_0)} \overline{a_r^N} a_s^N \widehat{\phi}(r-s)$ is then null, and suitably localizing ϕ in a neighborhood of the origin we get $a_{r_0}^N = 0$.
- Proceeding by recurrence, we get that $a_r^j = 0$ for all $r \in D$ whenever $j \geq 1$, proving that μ is the measure as claimed.
- The conclusion for $\widehat{\mu}$ now follows from $W(\widehat{\mu})(x, \omega) = W(\mu)(-\omega, x)$. \square

MATRIX-WIGNER TRANSFORMS

The Wigner transform can be decomposed into three steps:

$$f, g \longrightarrow f \otimes \bar{g} \longrightarrow \tau(f \otimes \bar{g}) \longrightarrow W(f, g) = \mathcal{F}_2(\tau(f \otimes \bar{g}))$$

where

$$(f \otimes \bar{g})(x, t) = f(x)\bar{g}(t),$$

$$\tau(f \otimes \bar{g})(x, t) = f(x + \frac{t}{2})\bar{g}(x - \frac{t}{2}),$$

$$\mathcal{F}_2[\tau(f \otimes \bar{g})] = \int_{\mathbb{R}^d} f(x + \frac{t}{2})\bar{g}(x - \frac{t}{2}) e^{-2\pi i \omega t} dt.$$

MATRIX-WIGNER TRANSFORMS

The Wigner transform can be decomposed into three steps:

$$f, g \longrightarrow f \otimes \bar{g} \longrightarrow \tau(f \otimes \bar{g}) \longrightarrow W(f, g) = \mathcal{F}_2(\tau(f \otimes \bar{g}))$$

where

$$(f \otimes \bar{g})(x, t) = f(x)\bar{g}(t),$$

$$\tau(f \otimes \bar{g})(x, t) = f(x + \frac{t}{2})\bar{g}(x - \frac{t}{2}),$$

$$\mathcal{F}_2[\tau(f \otimes \bar{g})] = \int_{\mathbb{R}^d} f(x + \frac{t}{2})\bar{g}(x - \frac{t}{2}) e^{-2\pi i \omega t} dt.$$

Let's replace the "torsion" τ in the second step by a general change of variable:

Definition

The *Matrix-Wigner transform* of $f, g \in \mathcal{S}'(\mathbb{R}^d)$ associated with $T \in GL(2d, \mathbb{R})$ is

$$W_T(f, g) = \mathcal{F}_2(\tau(f \otimes \bar{g})).$$

As usual we write $W_T(f)$ for $W_T(f, f)$. (Bayer, Cordero, Gröchenig, Trapasso, a.o.)

MATRIX-WIGNER TRANSFORMS

The Wigner transform can be decomposed into three steps:

$$f, g \longrightarrow f \otimes \bar{g} \longrightarrow \tau(f \otimes \bar{g}) \longrightarrow W(f, g) = \mathcal{F}_2(\tau(f \otimes \bar{g}))$$

where

$$(f \otimes \bar{g})(x, t) = f(x)\bar{g}(t),$$

$$\tau(f \otimes \bar{g})(x, t) = f(x + \frac{t}{2})\bar{g}(x - \frac{t}{2}),$$

$$\mathcal{F}_2[\tau(f \otimes \bar{g})] = \int_{\mathbb{R}^d} f(x + \frac{t}{2})\bar{g}(x - \frac{t}{2})e^{-2\pi i \omega t} dt.$$

Let's replace the "torsion" τ in the second step by a general change of variable:

Definition

The *Matrix-Wigner transform* of $f, g \in \mathcal{S}'(\mathbb{R}^d)$ associated with $T \in GL(2d, \mathbb{R})$ is

$$W_T(f, g) = \mathcal{F}_2(\tau(f \otimes \bar{g})).$$

As usual we write $W_T(f)$ for $W_T(f, f)$. (Bayer, Cordero, Gröchenig, Trapasso, a.o.)

- It includes most of the basic time-frequency representations
- Unifying framework where we can focus the connections between our results and those of Lev-Olevskii.

Let us take $T : \mathbb{R}^{2d} \rightarrow \mathbb{R}^{2d}$ invertible linear transformation with inverse

$$T^{-1} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$

Proposition (P.B., C. Fernandez, A. Galbis, A. Oliaro, (JFA 2022))

Let $\Pi_1 \text{supp } W_T(\mu, \nu)$ be a u.d. set, then

$$\begin{cases} \det A \neq 0 \implies \text{supp } \mu \text{ is u.d.} \\ \det B \neq 0 \implies \text{supp } \nu \text{ is u.d.} \end{cases}$$

Let $\Pi_2 \text{supp } W_T(\mu, \nu)$ be a u.d. set, then

$$\begin{cases} \det A \neq 0 \implies \text{supp } \widehat{\nu} \text{ is u.d.} \\ \det B \neq 0 \implies \text{supp } \widehat{\mu} \text{ is u.d.} \end{cases}$$

Some particular cases:

Wigner

If $T^{-1} = \begin{pmatrix} \frac{1}{2}\text{Id} & \frac{1}{2}\text{Id} \\ \text{Id} & -\text{Id} \end{pmatrix}$ then $W_T(\mu, \nu) = W(\mu, \nu)$ Wigner transform.

$\Pi_1 \text{supp } W(\mu, \nu) \text{ u.d.} \Rightarrow \text{supp } \mu, \text{supp } \nu \text{ u.d.}$

(resp. $\Pi_2 \text{supp } W(\mu, \nu) \text{ u.d.} \Rightarrow \text{supp } \hat{\mu}, \text{supp } \hat{\nu} \text{ u.d.}$)

Some particular cases:

Wigner

If $T^{-1} = \begin{pmatrix} \frac{1}{2}\text{Id} & \frac{1}{2}\text{Id} \\ \text{Id} & -\text{Id} \end{pmatrix}$ then $W_T(\mu, \nu) = W(\mu, \nu)$ Wigner transform.

$\Pi_1 \text{supp } W(\mu, \nu) \text{ u.d.} \Rightarrow \text{supp } \mu, \text{supp } \nu \text{ u.d.}$

(resp. $\Pi_2 \text{supp } W(\mu, \nu) \text{ u.d.} \Rightarrow \text{supp } \hat{\mu}, \text{supp } \hat{\nu} \text{ u.d.}$)

Ambiguity Function

If $T^{-1} = \begin{pmatrix} \text{Id} & -\text{Id} \\ \frac{1}{2}\text{Id} & \frac{1}{2}\text{Id} \end{pmatrix}$ then

$W_T(\mu, \nu) = \int_{\mathbb{R}^d} e^{-2\pi i \omega t} \mu(t + x/2) \overline{\nu(t - x/2)} dt = A(\mu, \nu)$ is the *Ambiguity function* and the same conclusion holds as for Wigner.

(and similarly for the STFT, τ -Wigner, and many other time-frequency representations)

Some particular cases:

Wigner

If $T^{-1} = \begin{pmatrix} \frac{1}{2}\text{Id} & \frac{1}{2}\text{Id} \\ \text{Id} & -\text{Id} \end{pmatrix}$ then $W_T(\mu, \nu) = W(\mu, \nu)$ Wigner transform.

$\Pi_1 \text{supp } W(\mu, \nu) \text{ u.d.} \Rightarrow \text{supp } \mu, \text{supp } \nu \text{ u.d.}$

(resp. $\Pi_2 \text{supp } W(\mu, \nu) \text{ u.d.} \Rightarrow \text{supp } \hat{\mu}, \text{supp } \hat{\nu} \text{ u.d.}$)

Ambiguity Function

If $T^{-1} = \begin{pmatrix} \text{Id} & -\text{Id} \\ \frac{1}{2}\text{Id} & \frac{1}{2}\text{Id} \end{pmatrix}$ then

$W_T(\mu, \nu) = \int_{\mathbb{R}^d} e^{-2\pi i \omega t} \mu(t + x/2) \overline{\nu(t - x/2)} dt = A(\mu, \nu)$ is the *Ambiguity function* and the same conclusion holds as for Wigner.

(and similarly for the STFT, τ -Wigner, and many other time-frequency representations)

Lev-Olevskii (\simeq Rihaczek transform)

If $T^{-1} = \begin{pmatrix} \text{Id} & 0 \\ 0 & -\text{Id} \end{pmatrix}$ then $W_T(\mu, \nu) = \mathcal{F}_2(\mu \otimes \overline{\nu})(x, \omega) = \mu(x) \overline{\hat{\nu}(\omega)}$,

therefore Lev-Olevskii hypothesis $\mu = \sum_{\alpha \in \Lambda} a_{\alpha} \delta_{\alpha}$; $\hat{\mu} = \sum_{\beta \in S} b_{\beta} \delta_{\beta}$ with Λ, S u.d. sets is a particular case of the hypothesis $W_T(\mu, \nu) = \sum_{(r,s) \in A \times B} c_{r,s} \delta_{(r,s)}$ with A, B u.d. sets.

Under slightly more strict conditions on the matrix we have the following generalization of the Lev-Olevski theorem (in dimension $d = 1$):

Proposition (P.B., C. Fernandez, A. Galbis, A. Oliaro, (JFA 2022))

Let $\mu, \nu \in \mathcal{S}'(\mathbb{R}) \setminus \{0\}$.

Suppose there exist $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ invertible linear transformation with inverse

$$T^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad a \neq 0, b \neq 0,$$

such that

$$W_T(\mu, \nu) = \sum_{(r,s) \in A \times B} c_{r,s} \delta_{(r,s)} \quad \text{with } A, B \text{ u.d. sets.}$$

Then $\mu, \nu, \widehat{\mu}, \widehat{\nu}$ are measures supported in u.d. sets, i.e.

$$\mu = \sum_{r \in S_\mu} a_r \delta_r, \quad \nu = \sum_{s \in S_\nu} b_s \delta_s, \quad \widehat{\mu} = \sum_{r \in S_{\widehat{\mu}}} \tilde{a}_r \delta_r, \quad \widehat{\nu} = \sum_{s \in S_{\widehat{\nu}}} \tilde{b}_s \delta_s,$$

for some u.d. sets $S_\mu, S_\nu, S_{\widehat{\mu}}, S_{\widehat{\nu}}$ (and slowly increasing coefficients $a_j, b_j, \tilde{a}_j, \tilde{b}_j \in \mathbb{C}$).

It follows that μ and ν are of the form $\sum_{j=1}^N \sum_{\lambda \in L + \theta_j} P_j(\lambda) \delta_\lambda$ (for some lattices L , trigonometric polynomials P_j , and $\theta_j \in \mathbb{R}$).

Finally in general dimension d the situation is described by the following two complementary and mutually exclusive theorems:

Let T be an invertible $2d \times 2d$ matrix of the form

$$T = \begin{pmatrix} A_0 & B_0 \\ C_0 & D_0 \end{pmatrix}, \quad \text{with inverse} \quad T^{-1} = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

and suppose that $\mu \in \mathcal{S}'(\mathbb{R}^d)$ satisfy $W_T(\mu) = \sum_{(r,s) \in R \times S} c_{rs} \delta_{(r,s)}$ with $R, S \subset \mathbb{R}^d$ u.d. sets.

Theorem (1) (P.B., C.Fernandez, A.Galbis, A.Oliaro; Res. Math., 2025)

If

- $\sup_{s \in S} |c_{rs}| < \infty$ for every $r \in R$ and $\sup_{r \in R} |c_{rs}| < \infty$ for every $s \in S$;
- $\det(B_0 - D_0) \neq 0$;
- $\det(A + B) \neq 0$.

Then μ and $\hat{\mu}$ are measures whose supports, Λ and Σ , are uniformly discrete. If furthermore W_T is in the Cohen class, then $\Lambda \subseteq R$ and $\Sigma \subseteq S$.

Main examples: Cohen class representations and in particular the Wigner transform

Finally in general dimension d the situation is described by the following two complementary and mutually exclusive theorems:

Let T be an invertible $2d \times 2d$ matrix of the form

$$T = \begin{pmatrix} A_0 & B_0 \\ C_0 & D_0 \end{pmatrix}, \quad \text{with inverse} \quad T^{-1} = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

and suppose that $\mu \in \mathcal{S}'(\mathbb{R}^d)$ satisfy $W_T(\mu) = \sum_{(r,s) \in R \times S} c_{r,s} \delta_{(r,s)}$ with $R, S \subset \mathbb{R}^d$ **discrete** (not necessarily u.d.) sets.

Theorem (2) (P.B., C.Fernandez, A.Galbis, A.Oliaro; Res. Math., 2025)

- If $B_0 = D_0$ then μ and $\widehat{\mu}$ are measures whose supports, Λ and Σ , are uniformly discrete; moreover, there exist invertible $d \times d$ matrices M and N such that $\Lambda - \Lambda \subset M(R)$, $\Sigma - \Sigma \subset N(S)$.
- If moreover R or S is uniformly discrete then $\mu = \sum_{j=1}^N P_j \sum_{\lambda \in L + \theta_j} \delta_\lambda$, where L is a lattice, $\theta_j \in \mathbb{R}^d$ and $P_j(x)$ is a trigonometric polynomial, i.e. μ is a Fourier quasicrystal.

Main example: Ambiguity function

BIBLIOGRAPHY

- P.B., C. Fernandez, A. Galbis, A. Oliaro; *Wigner transforms and quasicrystals*, J. Functional Anal., 282, (2022), 1-20.
- P.B., C. Fernandez, A. Galbis, A. Oliaro; *Detecting quasicrystals with quadratic time-frequency distributions*, Results in Mathematics, to appear.
- E. Bombieri, J. Taylor; *Which distributions of matter diffract? An initial investigation*, J. de Physique Colloques, 47, (1986), C3, pp. 19-28.
- N. Lev, A. Olevskii; *Quasicrystals and Poisson's summation formula*. Invent. Math. **200** (2015), no. 2, 585-606.
- N. Lev, A. Olevskii; *Quasicrystals with discrete support and spectrum*. Rev. Mat. Iberoam. **32** (2016), 1341-1352.

THANK YOU !!!
AND HAPPY BIRTHDAYS PEPE!!!