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AN INTRIGUING HISTORY...

AN INTRIGUING HISTORY...

WHAT IS A QUASICRYSTAL?
In mineralogy:

Till the 80’s: solid state matter in 2 forms, unordered and ordered (crystals)
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AN INTRIGUING HISTORY...

AN INTRIGUING HISTORY...

WHAT IS A QUASICRYSTAL?
In mineralogy:

Till the 80’s: solid state matter in 2 forms, unordered and ordered (crystals)

1982: Daniel Schechtman discovers an alluminium-manganese alloy with prohibited
diffraction patterns. Though initially contrasted, wins the Nobel Prize in 2011.
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AN INTRIGUING HISTORY...

AN INTRIGUING HISTORY...

Found in nature? Yes!

material from liquefaction of sand after the first atomic explosion in New Mexico

meteorite in Kamchatka peninsula (Bindi-Steinhardt expedition 2011)

Paolo Boggiatto, University of Torino, Italy joint work with Antonio Galbis, Carmen Fernandez, Univ. of Valencia and Alessandro Oliaro, Univ. of TorinoCan we detect quasicrystals using time-frequency distributions? 5 / 24



AN INTRIGUING HISTORY...

AN INTRIGUING HISTORY...

Found in nature? Yes!

material from liquefaction of sand after the first atomic explosion in New Mexico

meteorite in Kamchatka peninsula (Bindi-Steinhardt expedition 2011)

Paolo Boggiatto, University of Torino, Italy joint work with Antonio Galbis, Carmen Fernandez, Univ. of Valencia and Alessandro Oliaro, Univ. of TorinoCan we detect quasicrystals using time-frequency distributions? 5 / 24



AN INTRIGUING HISTORY...

AN INTRIGUING HISTORY...

Found in nature? Yes!

material from liquefaction of sand after the first atomic explosion in New Mexico

meteorite in Kamchatka peninsula (Bindi-Steinhardt expedition 2011)

Paolo Boggiatto, University of Torino, Italy joint work with Antonio Galbis, Carmen Fernandez, Univ. of Valencia and Alessandro Oliaro, Univ. of TorinoCan we detect quasicrystals using time-frequency distributions? 5 / 24



AN INTRIGUING HISTORY...

Many have contributed to a mathematical theory of quasicrystals:

R. Penrose, Y. Meyer (1970) (preceding Schechtman discovery!),

A. Cordoba (1989),

Kolountzakis (1996)

Lagarias (1996),

S. Yu. Favorov (2016)

V.P. Palamodov (2017)

P. Kurasov and P. Sarnak (2020)

...and others
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FOURIER QUASICRYSTALS

FOURIER QUASICRYSTALS

Tilings by ”Cut and Project” method: Fibonacci Quasicrystal, a 1-dimensional model

This method, which can be abstractely formalized, leads to distributions of the type

µ =
∑
λ∈Λ

aλδλ

where Λ is in some sense a ”quasi-periodic” discrete set, and with Fourier transform of
the same type.
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FOURIER QUASICRYSTALS

FOURIER QUASICRYSTALS

There is not a univocal definition of quasicrystals, we focus on that of Fourier
quasicrystals ...even for the definition of Fourier quasicrystals there is not a perfect
agreement, however usually the following is assumed (Lev, Olevskii):

Fourier quasicrystals

A temprered distribution µ ∈ S ′(Rd) is a called Fourier quasicrystal if µ and µ̂ are of the
form

µ =
∑
λ∈Λ

aλδλ, µ̂ =
∑
s∈S

bsδs ,

where Λ and S are discrete subsets of Rd , and δξ is the mass point at ξ.
Λ and S are called respectively support and spectrum of µ.

Basic examples: Dirac combs

Let L = A(Zd) be a full-rank lattice (i.e. the matrix A is non-degenerate), and let
L∗ = {λ∗ ∈ Rd : 〈λ∗, λ〉 ∈ Z} the dual lattice. Then for the Dirac comb δL =

∑
λ∈L δλ

we have δ̂L = 1
det A

δL∗ .
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FOURIER QUASICRYSTALS

Clearly Dirac combs have a well-defined periodic structure.
Question (Lagarias 2000): is “part of this structure in some sense” also present in
Fourier quasicrystals?

Answer (Lev, Olevskii 2015 and 2016): one “positive”, and one “negative” result.

Definition

A set A ⊂ Rd is said to be uniformly discrete (u.d.) if there is δ > 0 such that |r − s| ≥ δ
whenever s, r ∈ A, s 6= r .

Theorem (“positive”) (N. Lev, A. Olevskii, (Inventiones Math. 2015))

If a measure µ on Rd (which is assumed to be positive in the case d > 1) is a Fourier
quasicrystal and both the support and the spectrum of µ are u.d. then there are a lattice
L on Rd , vectors θj ∈ Rd and trigonometric polynomials Pj (1 ≤ j ≤ N) such that

µ =
N∑
j=1

∑
λ∈L+θj

Pj(λ)δλ. (1)

The same holds for µ̂ (with the dual lattice).
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FOURIER QUASICRYSTALS

Remark

REMARK: the previous theorem shows that µ is a sum of translations and modulations
of the Dirac delta. Vicerversa any tempered distribution of the type (1) has both u.d.
support and spectrum.

Note that the “quasi-periodicity” of µ is only due to the polynomials

Pj(x) =
∑Nj

k=−Nj
a

(j)
k e2πiω

(j)
k

x .

Another ”positive” result:

Theorem (V.P. Palamodov, (JFAA 2017))

Suppose that 0 6= µ ∈ S ′(Rd) has support Λ and spectrum Σ such that Λ− Λ and Σ−Σ
are discrete and (at least) one of them is u.d. Then for µ and µ̂ the same conclusion
holds as in the previous theorem
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FOURIER QUASICRYSTALS

The uniform discreteness of the support and the spectrum of µ in the previous theorem is
essential as proved by the following:

Theorem (“negative”) (N. Lev, A. Olevskii (Rev. Mat. Iberoam. 2016))

There exists a Fourier quasicrystal µ =
∑
λ∈Λ aλδλ with µ̂ =

∑
s∈S bsδs such that Λ and

S are discrete closed sets, but Λ contains only finitely many elements of any arithmetic
progression. The construction can easily be extended to n > 1.

It follows that suppµ can not contain any lattice and in this sense µ is someow “far
away” from being periodic.
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WIGNER TRANSFORMS AND QUASICRYSTALS

WIGNER TRANSFORMS AND QUASICRYSTALS

In view of the symmetric conditions on µ and µ̂ in the definition of Fourier quasicrystals,
it seems reasonable that some information about the quasi-periodic structure of µ can be
deduced from the knowledge of its time-frequency distribution.
We consider the Wigner transform

The cross-Wigner distribution of function or distributions f , g on Rd is

W (f , g)(x , ω) =

∫
Rd

f (x +
t

2
)g(x − t

2
)e−2πiωtdt, x , ω ∈ Rd .

It defines sesquilinear maps in the functional settings:

W : S(Rd)× S(Rd) −→ S(R2d)
W : L2(Rd)× L2(Rd) −→ L2(R2d)
W : S ′(Rd)× S ′(Rd) −→ S ′(R2d) (...and many others)

The Wigner transform of f is W (f ) := W (f , f )

W (f ) is a quadratic representation of the signal f giving information about the energy of
the signal f with respect to both time and frequency.
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WIGNER TRANSFORMS AND QUASICRYSTALS

An negative but interesting start...

The most natural condition is to consider the case when W (µ) is supported on a u. d.
set of R2d . However, due to the interaction between the Wigner distribution and the
metaplectic operators, from this fact we cannot even deduce that the support of µ is
discrete.

Actually, to every symplectic matrix A ∈ Sp(2,R) let TA be a unitary operator acting on
L2(R) such that

W
(
TAf ,TAg

)
(z) = W (f , g)(A∗z) ∀z = (x , ω) ∈ R2. (2)

TA extends to an isomorphism on S ′(R), and (2) holds for f , g ∈ S ′(R).

Example (P.B., C. Fernandez, A. Galbis, A. Oliaro, (JFA 2022))

Let us consider f = g = µ =
∑

n∈Z δn (the usual Dirac comb):
When

A =

(
cos θ − sin θ
sin θ cos θ

)
, θ ∈ (−π, π)

TA is the fractional Fourier transform Fα, where α = 2
π
θ ∈ (−2, 2). In this case

W (µ)(z) is a well-known distribution with u.d. support and W (TA µ)(z) = W (µ)(A∗z)
is a rotation of W (µ) hence also supported on a u.d. set of R2. However for a suitable
choice of θ we have supp TA µ = R
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WIGNER TRANSFORMS AND QUASICRYSTALS

We have therefore to assume more restrictive conditions on the support of Wµ:
our assumption will be that µ ∈ S ′(Rd) has Wigner transform W (µ) supported on the
product of two uniformly discrete subsets of Rd .

Our result is the following

Theorem (P.B., C. Fernandez, A. Galbis, A. Oliaro, (JFA 2022)) (*)

Let µ ∈ S ′(Rd) satisfy W (µ) =
∑

(r,s)∈A×B cr,sδ(r,s) where A,B are uniformly discrete

sets in Rd . Then µ and µ̂ are measures with supports contained in A and B respectively,
i.e. µ is a quasicrystal with u.d. support and spectrum.

By the Lev-Olevskii and Palamodov “positive” results we have then

µ =
N∑
j=1

∑
λ∈L+θj

Pj(λ)δλ,

the same holds for µ̂.
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WIGNER TRANSFORMS AND QUASICRYSTALS

Lemma

Let µ ∈ S ′(Rd) satisfy W (µ) =
∑

(r,s)∈A×B cr,sδ(r,s) where A,B are u.d. sets. Then
supp µ ⊂ A and supp µ̂ ⊂ B.

Moreover, r1+r2
2
∈ A for any r1, r2 ∈ supp µ, and similarly s1+s2

2
∈ B for any s1, s2 ∈ supp µ̂

Remark

Note that the inclusions obtained above go into the “opposite” direction with respect to
classical inclusions

Π1(suppWµ) ⊆ H(suppµ), Π2(suppWµ) ⊆ H(supp µ̂)
where Πj are the projections from Rd × Rd onto the first and second factor, and H
indicates the convex hall of a set.
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WIGNER TRANSFORMS AND QUASICRYSTALS

Idea of the proof of Theorem (*) in dimension d = 1:

� As µ ∈ S ′(Rd) it is of finite order, and from the previous Lemma suppµ ⊆ A which is
u.d., therefore, by the structure theorem, there exists N ∈ N such that

µ =
∑

r∈suppµ

N∑
j=0

ajrδ
(j)
r ,

with ajr ∈ C. We assume N ≥ 1 and want to show that aNr = 0 for all r ∈ suppµ.

� For φ1, φ2 ∈ S(R) we explicitly compute 〈W (µ), φ1 ⊗ φ2〉

� We use now the uniform discreteness: For each r0 ∈ suppµ we set
φ1(x) = ψ(t(x − r0)), with t > 1, and for suitably localized ψ we get

t2N

∣∣∣∣∣∣
∑

(r,s)∈D(r0)

aNr a
N
s φ̂2(r − s)

∣∣∣∣∣∣ ≤ C ||ψ||∞||φ2||∞,

with D(r0) = {(r , s) ∈ suppµ : r+s
2

= r0}
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Idea of the proof of Theorem (*) in dimension d = 1:

� As µ ∈ S ′(Rd) it is of finite order, and from the previous Lemma suppµ ⊆ A which is
u.d., therefore, by the structure theorem, there exists N ∈ N such that

µ =
∑

r∈suppµ

N∑
j=0

ajrδ
(j)
r ,

with ajr ∈ C. We assume N ≥ 1 and want to show that aNr = 0 for all r ∈ suppµ.

� For φ1, φ2 ∈ S(R) we explicitly compute 〈W (µ), φ1 ⊗ φ2〉

� We use now the uniform discreteness: For each r0 ∈ suppµ we set
φ1(x) = ψ(t(x − r0)), with t > 1, and for suitably localized ψ we get

t2N

∣∣∣∣∣∣
∑

(r,s)∈D(r0)

aNr a
N
s φ̂2(r − s)

∣∣∣∣∣∣ ≤ C ||ψ||∞||φ2||∞,

with D(r0) = {(r , s) ∈ suppµ : r+s
2

= r0}

Paolo Boggiatto, University of Torino, Italy joint work with Antonio Galbis, Carmen Fernandez, Univ. of Valencia and Alessandro Oliaro, Univ. of TorinoCan we detect quasicrystals using time-frequency distributions? 16 / 24



WIGNER TRANSFORMS AND QUASICRYSTALS

� For t −→∞ we get
∑

(r,s)∈D(r0) a
N
r a

N
s φ̂2(r − s) = 0 for every φ2 ∈ D(R).

� The distrubution φ −→
∑

(r,s)∈D(r0) a
N
r a

N
s φ̂(r − s) is then null, and suitably localizing φ

in a neiborhood of the origin we get aNr0 = 0.

� Proceeding by recurrence, we get that ajr = 0 for all r ∈ D whenever j ≥ 1, proving
that µ is the measure as claimed.

� The conclusion for µ̂ now follows from W (µ̂)(x , ω) = W (µ)(−ω, x). �
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MATRIX-WIGNER TRANSFORMS

The Wigner transform can be decomposed into three steps:

f , g −→ f ⊗ g −→ τ(f ⊗ g) −→W (f , g) = F2(τ(f ⊗ g))

where
(f ⊗ g)(x , t) = f (x)g(t),

τ(f ⊗ g)(x , t) = f (x + t
2
)g(x − t

2
),

F2[τ(f ⊗ g)] =
∫
Rd f (x + t

2
)g(x − t

2
)e−2πiωtdt.

Let’s replace the “torsion” τ in the second step by a general change of variable:

Definition

The Matrix-Wigner transform of f , g ∈ S ′(Rd) associated with T ∈ GL(2d ,R) is

WT (f , g) = F2(T (f ⊗ g)).

As usual we write WT (f ) for WT (f , f ). (Bayer, Cordero, Gröchenig, Trapasso, a.o.)

It includes most of the basic time-frequency representations

Unifying framework where we can focus the connections between our results and
those of Lev-Olevskii.
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MATRIX-WIGNER TRANSFORMS

Let us take T : R2d → R2d invertible linear transformation with inverse

T−1 =

(
A B
C D

)
.

Proposition (P.B., C. Fernandez, A. Galbis, A. Oliaro, (JFA 2022))

Let Π1suppWT (µ, ν) be a u.d. set, then

{
detA 6= 0 =⇒ suppµ is u.d,

detB 6= 0 =⇒ supp ν is u.d.

Let Π2suppWT (µ, ν) be a u.d. set, then

{
detA 6= 0 =⇒ supp ν̂ is u.d,

detB 6= 0 =⇒ supp µ̂ is u.d.
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MATRIX-WIGNER TRANSFORMS

Some particular cases:

Wigner

If T−1 =

(
1
2
Id 1

2
Id

Id −Id

)
then WT (µ, ν) = W (µ, ν) Wigner transform.

Π1suppW (µ, ν) u.d. ⇒ suppµ, supp ν u.d.
(resp. Π2suppW (µ, ν) u.d. ⇒ supp µ̂, supp ν̂ u.d)

Ambiguity Function

If T−1 =

(
Id −Id

1
2
Id 1

2
Id

)
then

WT (µ, ν) =
∫
Rd e

−2πiωtµ(t + x/2)ν(t − x/2) dt = A(µ, ν) is the Ambiguity function and
the same conslusion holds as for Wigner.

(and similarly for the STFT, τ -Wigner, and many other time-frequency representations)

Lev-Olevskii (' Rihaczek transform)

If T−1 =

(
Id 0
0 −Id

)
then WT (µ, ν) = F2(µ⊗ ν)(x , ω) = µ(x)ν̂(ω),

therefore Lev-Olevskii hypothesis µ =
∑
α∈Λ aαδα; µ̂ =

∑
β∈S bβδβ with Λ, S u.d. sets

is a particular case of the hypothesis WT (µ, ν) =
∑

(r,s)∈A×B cr,sδ(r,s) with A,B u.d. sets.
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MATRIX-WIGNER TRANSFORMS

Under slightly more strict conditions on the matrix we have the following generalization
of the Lev-Olevski theorem (in dimension d = 1):

Proposition (P.B., C. Fernandez, A. Galbis, A. Oliaro, (JFA 2022))

Let µ, ν ∈ S ′(R) \ {0}.
Suppose there exist T : R2 → R2 invertible linear transformation with inverse

T−1 =

(
a b
c d

)
, a 6= 0, b 6= 0,

such that
WT (µ, ν) =

∑
(r,s)∈A×B

cr,sδ(r,s) with A,B u.d. sets.

Then µ, ν, µ̂, ν̂ are measures supported in u.d. sets, i.e.

µ =
∑
r∈Sµ

arδr , ν =
∑
s∈Sν

bsδs , µ̂ =
∑
r∈Sµ̂

ãrδr , ν̂ =
∑
s∈Sν̂

b̃sδs ,

for some u.d. sets Sµ,Sν , Sµ̂, Sν̂ (and slowly increasing coefficients aj , bj , ãj , b̃j ∈ C).

It follows that µ and ν are of the form
∑N

j=1

∑
λ∈L+θj

Pj(λ)δλ (for some lattices L,

trigonometric polynomials Pj , and θj ∈ R).
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Finally in general dimension d the situation is described by the following two
complementary and mutually exclusive theorems:

Let T be an invertible 2d × 2d matrix of the form

T =

(
A0 B0

C0 D0

)
, with inverse T−1 =

(
A B
C D

)
,

and suppose that µ ∈ S ′(Rd) satisfy WT (µ) =
∑

(r,s)∈R×S cr,sδ(r,s) with R, S ⊂ Rd u.d.
sets.

Theorem (1) (P.B., C.Fernandez, A.Galbis, A.Oliaro; Res. Math., 2025)

If

• sups∈S |crs | <∞ for every r ∈ R and supr∈R |crs | <∞ for every s ∈ S ;

• det(B0 − D0) 6= 0;

• det(A + B) 6= 0.

Then µ and µ̂ are measures whose supports, Λ and Σ, are uniformly discrete. If
furthermore WT is in the Cohen class, then Λ ⊆ R and Σ ⊆ S .

Main examples: Cohen class representations and in particular the Wigner transform
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Finally in general dimension d the situation is described by the following two
complementary and mutually exclusive theorems:

Let T be an invertible 2d × 2d matrix of the form

T =

(
A0 B0

C0 D0

)
, with inverse T−1 =

(
A B
C D

)
,

and suppose that µ ∈ S ′(Rd) satisfy WT (µ) =
∑

(r,s)∈R×S cr,sδ(r,s) with R, S ⊂ Rd

discrete (not necessarily u.d.) sets.

Theorem (2) (P.B., C.Fernandez, A.Galbis, A.Oliaro; Res. Math., 2025)

• If B0 = D0 then µ and µ̂ are measures whose supports, Λ and Σ, are uniformly
discrete; moreover, there exist invertible d × d matrices M and N such that
Λ− Λ ⊂ M(R), Σ− Σ ⊂ N(S).

• If moreover R or S is uniformly discrete then µ =
∑N

j=1 Pj

∑
λ∈L+θj

δλ, where L is a

lattice, θj ∈ Rd and Pj(x) is a trigonometric polynomial, i.e. µ is a Fourier
quasicrystal.

Main example: Ambiguity function
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THANK YOU !!!

AND HAPPY BIRTHDAYS PEPE!!!
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