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AN INTRIGUING HISTORY...

WHAT IS A QUASICRYSTAL?
In mineralogy:

Glasses

Crystals

no order - amorphous

o Till the 80’s: solid state matter in 2 forms, unordered and ordered (crystals)

"periodic order" -
translation invariance
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AN INTRIGUING HISTORY...

WHAT IS A QUASICRYSTAL?
In mineralogy:

o Till the 80’s: solid state matter in 2 forms, unordered and ordered (crystals)

@ 1982: Daniel Schechtman discovers an alluminium-manganese alloy with prohibited
diffraction patterns. Though initially contrasted, wins the Nobel Prize in 2011.
Glasses

Crystals

Quasicrystals

no order - amorphous

"periodic order" -
translation invariance

https:i/matmatch

"aperiodic order" -
quasi periodicity
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AN INTRIGUING HISTORY...

Found in nature? Yes!

_Can we detect quasicrystals using time-frequency dis 5/24



AN INTRIGUING HISTORY...

Found in nature? Yes!
@ material from liquefaction of sand after the first atomic explosion in New Mexico
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AN INTRIGUING HISTORY...

Found in nature? Yes!

@ material from liquefaction of sand after the first atomic explosion in New Mexico
@ meteorite in Kamchatka peninsula (Bindi-Steinhardt expedition 2011)

E
Koryak Mountains - Kamchatka Peninsula
Bindi-Steinhardt expedition 2011
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AN INTRIGUING HISTORY.

Many have contributed to a mathematical theory of quasicrystals:

R. Penrose, Y. Meyer (1970) (preceding Schechtman discovery!),
A. Cordoba (1989),

Kolountzakis (1996)

Lagarias (1996),

S. Yu. Favorov (2016)

V.P. Palamodov (2017)

P. Kurasov and P. Sarnak (2020)

@ ...and others
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FOURIER QUASICRYSTALS

Tilings by " Cut and Project” method: Fibonacci Quasicrystal, a 1-dimensional model

S: small rabbit L= large rabbit

n. rabbits
1 S substitution rule:
1 L S=L
3 LS L=>LS
3 LSL (or concatenation)
5 LSLLS
8  LSLLSLSL
13 LSLLSLSLLSLLS
etc.
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FOURIER QUASICRYSTALS

Tilings by " Cut and Project” method: Fibonacci Quasicrystal, a 1-dimensional model

S: small rabbit L= large rabbit

n. rabbits
1 S substitution rule:
1 L S=L
3 LS L=>LS
3 LSL (or concatenation)
5 LSLLS
8  LSLLSLSL
13  LSLLSLSLLSLLS
etc. Strip of irrational slope % and width \}%
(= 1+2‘/§ " golden section”)
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FOURIER QUASICRYSTALS

Tilings by " Cut and Project” method: Fibonacci Quasicrystal, a 1-dimensional model

S: small rabbit L= large rabbit

n. rabbits o
1 S substitution rule:
1 L S=>L
3 LS L=LS
3 LSL (or concatenation)
5 LSLLS '
8  LSLLSLSL + 0
13 LSLLSLSLLSLLS ot
etc. Strip of irrational slope + and width —£Z

T V24T
145 »

(=% golden section™)

This method, which can be abstractely formalized, leads to distributions of the type
n=D_ ad
e

where A is in some sense a " quasi-periodic” discrete set, and with Fourier transform of
the same type.
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FOURIER QUASICRYSTALS

There is not a univocal definition of quasicrystals, we focus on that of Fourier
quasicrystals ...even for the definition of Fourier quasicrystals there is not a perfect
agreement, however usually the following is assumed (Lev, Olevskii):
Fourier quasicrystals
A temprered distribution y € S'(]Rd) is a called Fourier quasicrystal if u and 1 are of the
form

M:ZaA(S)\, ﬁzzbs557

AEN sES

where A and S are discrete subsets of R?, and &¢ is the mass point at £.
A and S are called respectively support and spectrum of p.
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FOURIER QUASICRYSTALS

There is not a univocal definition of quasicrystals, we focus on that of Fourier
quasicrystals ...even for the definition of Fourier quasicrystals there is not a perfect
agreement, however usually the following is assumed (Lev, Olevskii):

Fourier quasicrystals
A temprered distribution y € S'(]Rd) is a called Fourier quasicrystal if u and 1 are of the
form
M:ZaA(S)\, ﬁzzbs557
AEN sES

where A and S are discrete subsets of R?, and &¢ is the mass point at £.
A and S are called respectively support and spectrum of p.

Basic examples: Dirac combs

Let L = A(Z%) be a full-rank lattice (i.e. the matrix A is non-degenerate), and let
L* ={X" € R?: (X", \) € Z} the dual lattice. Then for the Dirac comb . =Y, ox

we have §; = O+

_1
det A
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FOURIER QUASICRYSTALS

Clearly Dirac combs have a well-defined periodic structure.
Question (Lagarias 2000): is “part of this structure in some sense” also present in
Fourier quasicrystals?
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FOURIER QUASICRYS S

Clearly Dirac combs have a well-defined periodic structure.

Question (Lagarias 2000): is “part of this structure in some sense” also present in
Fourier quasicrystals?

Answer (Lev, Olevskii 2015 and 2016): one “positive”, and one “negative” result.

Definition

A set A C R? is said to be uniformly discrete (u.d.) if there is § > 0 such that |r —s| > §
whenever s, r € A;s # r.

y

Theorem (“positive”) (N. Lev, A. Olevskii, (Inventiones Math. 2015))

If a measure p on RY (which is assumed to be positive in the case d > 1) is a Fourier
quasicrystal and both the support and the spectrum of u are u.d. then there are a lattice
L on R?, vectors §; € RY and trigonometric polynomials P; (1 < j < N) such that

p=3 > PN (1)

J=1 AEL+6;

The same holds for i (with the dual lattice).
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FOURIER QUASICRY:! S

Remark

REMARK: the previous theorem shows that u is a sum of translations and modulations
of the Dirac delta. Vicerversa any tempered distribution of the type (1) has both u.d.
support and spectrum.

Note that the “quasi-periodicity” of p is only due to the polynomials
N; j Wiw(/)x
Pi(x) = il _y, e,
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FOURIER QUASICRYS S

Remark

REMARK: the previous theorem shows that u is a sum of translations and modulations
of the Dirac delta. Vicerversa any tempered distribution of the type (1) has both u.d.
support and spectrum.

Note that the “quasi-periodicity” of p is only due to the polynomials
N; j Wiw(/)x
Pi(x) = ZyL_y, ek

Another " positive” result:

Theorem (V.P. Palamodov, (JFAA 2017))

Suppose that 0 # p € S'(Rd) has support A and spectrum X such that A— A and X — &
are discrete and (at least) one of them is u.d. Then for u and [i the same conclusion
holds as in the previous theorem
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FOURIER QUASICRYSTALS

The uniform discreteness of the support and the spectrum of y in the previous theorem is
essential as proved by the following:

Theorem (“negative”) (N. Lev, A. Olevskii (Rev. Mat. Iberoam. 2016))

There exists a Fourier quasicrystal u =3, » a%6>\ with i = ¢ bsds such that A and
S are discrete closed sets, but A contains only finitely many elements of any arithmetic
progression. The construction can easily be extended to n > 1.

It follows that supp p can not contain any lattice and in this sense p is someow “far
away” from being periodic.
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WIGNER TRANSFORMS AND QUASICRYSTALS

In view of the symmetric conditions on p and [ in the definition of Fourier quasicrystals,
it seems reasonable that some information about the quasi-periodic structure of u can be
deduced from the knowledge of its time-frequency distribution.

We consider the Wigner transform
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WIGNER TRANSFORMS AND QUASICRYSTALS

In view of the symmetric conditions on p and [ in the definition of Fourier quasicrystals,
it seems reasonable that some information about the quasi-periodic structure of u can be
deduced from the knowledge of its time-frequency distribution.

We consider the Wigner transform

The cross-Wigner distribution of function or distributions f, g on R? is

W(F.)(xw) = [ Fx+ Dalx— 5)e ™™ dt, xw € R,
RY 2 2

It defines sesquilinear maps in the functional settings:

W : S(R?) x S(R?) — S(R*)
W : L3(R?) x L*(RY) — L*(R*?)
W : S'(RY) x S'(RY) — S’(R?*) (...and many others)

The Wigner transform of f is W(f) := W(f, f)

v

W(f) is a quadratic representation of the signal f giving information about the energy of
the signal f with respect to both time and frequency.
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WIGNER TRANSFORMS AND QUASICRY: S

An negative but interesting start...

The most natural condition is to consider the case when W(u) is supported on a u. d.
set of R??. However, due to the interaction between the Wigner distribution and the

metaplectic operators, from this fact we cannot even deduce that the support of y is
discrete.
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WIGNER TRANSFORMS AND QUASICRYS S

An negative but interesting start...

The most natural condition is to consider the case when W(u) is supported on a u. d.
set of R??. However, due to the interaction between the Wigner distribution and the
metaplectic operators, from this fact we cannot even deduce that the support of y is
discrete.

Actually, to every symplectic matrix A € Sp(2,R) let Ta be a unitary operator acting on
L*(R) such that

W (Taf, Tag)(z) = W(f,g)(Az) Vz = (x,w) € R%. ()
Ta extends to an isomorphism on §’(R), and (2) holds for f, g € S§'(R).
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WIGNER TRANSFORMS AND QUASICRYSTALS

An negative but interesting start...

The most natural condition is to consider the case when W(u) is supported on a u. d.
set of R??. However, due to the interaction between the Wigner distribution and the
metaplectic operators, from this fact we cannot even deduce that the support of y is
discrete.

Actually, to every symplectic matrix A € Sp(2,R) let Ta be a unitary operator acting on
L*(R) such that

W (Taf, Tag)(z) = W(f,g)(Az) Vz = (x,w) € R%. ()
Ta extends to an isomorphism on §’(R), and (2) holds for f, g € S§'(R).

Example (P.B., C. Fernandez, A. Galbis, A. Oliaro, (JFA 2022))

Let us consider f = g=pu=>5,
When

nez On (the usual Dirac comb):

cosf —sinf
A_< sin @ cos )’06(77T’7r)

Ta is the fractional Fourier transform F*, where o = 20 € (—2,2). In this case
W (u)(z) is a well-known distribution with u.d. support and W(Ta p)(z) = W(u)(A*z)

is a rotation of W(u) hence also supported on a u.d. set of R?. However for a suitable
choice of 6 we have supp Tap =R

v
I I e e e = oo
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WIGNER TRANSFORMS AND QUASICRY: S

We have therefore to assume more restrictive conditions on the support of Wu:
our assumption will be that u € S’(RY) has Wigner transform W(u) supported on the
product of two uniformly discrete subsets of RY.
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WIGNER TRANSFORMS AND QUASICRYS S

We have therefore to assume more restrictive conditions on the support of Wu:

our assumption will be that u € S’(RY) has Wigner transform W(u) supported on the
product of two uniformly discrete subsets of RY.

Our result is the following

Theorem (P.B., C. Fernandez, A. Galbis, A. Oliaro, (JFA 2022)) *)

Let u € S'(R?) satisfy W(u) = 2 (r.s)eaxB Cr.sO(r,s) where A, B are uniformly discrete
sets in R?. Then w1 and [1 are measures with supports contained in A and B respectively,
i.e. p is a quasicrystal with u.d. support and spectrum.

By the Lev-Olevskii and Palamodov “positive” results we have then

n= Z Z PJ()‘)éM

J=1 AeL+0;

the same holds for 7.
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WIGNER TRANSFORMS AND QUASICRYSTALS

Lemma

Let € S'(R?) satisfy W(u) = Z(r,s)eAXB Cr,s0(r,s) where A, B are u.d. sets. Then
supp p» C A and supp 1 C B.

Moreover, 552 € A for any i, ry € supp i, and similarly 25 € B for any s1,s, € supp i
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WIGNER TRANSFORMS AND QUASICRYS S

Lemma

Let € S'(R?) satisfy W(u) = Z(r,s)eAXB Cr,s0(r,s) Where A, B are u.d. sets. Then
supp p» C A and supp 1 C B.

Moreover, 552 € A for any i, ry € supp i, and similarly 25 € B for any s1,s, € supp i
v

Remark

Note that the inclusions obtained above go into the “opposite” direction with respect to
classical inclusions

Mi(supp Wp) C H(suppp),  Ma2(supp Wp) C H(supp k)
where I; are the projections from R? x RY onto the first and second factor, and H
indicates the convex hall of a set.
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WIGNER TRANSFORMS AND QUASICRYSTALS

Idea of the proof of Theorem (*) in dimension d = 1:

e As € 8'(Rd) it is of finite order, and from the previous Lemma supp  C A which is
u.d., therefore, by the structure theorem, there exists N € N such that

N
p= S,

résupp p j=0

with &} € C. We assume N > 1 and want to show that a¥ = 0 for all r € supp p.
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WIGNER TRANSFORMS AND QUASICRYS S

Idea of the proof of Theorem (*) in dimension d = 1:

e As € 8'(Rd) it is of finite order, and from the previous Lemma supp  C A which is
u.d., therefore, by the structure theorem, there exists N € N such that

N
p= Y i,
résupp p j=0

with &} € C. We assume N > 1 and want to show that a¥ = 0 for all r € supp p.

e For ¢1,¢2 € S(R) we explicitly compute (W (u), $1 ® ¢2)
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WIGNER TRANSFORMS AND QUASICRYS S

Idea of the proof of Theorem (*) in dimension d = 1:

e As € 8'(Rd) it is of finite order, and from the previous Lemma supp  C A which is
u.d., therefore, by the structure theorem, there exists N € N such that

N
p= S,
résupp p j=0

with &} € C. We assume N > 1 and want to show that a¥ = 0 for all r € supp p.

e For ¢1,¢2 € S(R) we explicitly compute (W (u), $1 ® ¢2)

e We use now the uniform discreteness: For each ry € supp p we set
o1(x) = Y(t(x — rny)), with t > 1, and for suitably localized ) we get

VS @alda(r — 5)| < Clil ool oo,
(r,s)€D(ro)

with D(ro) = {(r,s) € suppp : 5° = ro}
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WIGNER TRANSFORMS AND QUASICR S

e For t — oo we get Z(r’S)ED(m)JaQ/E(r —s) = 0 for every ¢» € D(R).
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WIGNER TRANSFORMS AND QUASICRYSTALS

e For t — oo we get Z(r’S)ED(m)JaQ/E(r —s) = 0 for every ¢» € D(R).

e The distrubution ¢ — Z (r9)eD( ,O)Jaivg(r — s) is then null, and suitably localizing ¢
in a neiborhood of the origin we get al\é =0.
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WIGNER TRANSFORMS AND QUASICRYSTALS

e For t — oo we get Z(,’S)EDW)J‘QQ/EU —s) = 0 for every ¢» € D(R).

e The distrubution ¢ — Z(r’s)ED(m)JaQ’Z(r — s) is then null, and suitably localizing ¢
in a neiborhood of the origin we get aﬁé =0.

e Proceeding by recurrence, we get that 2/ = 0 for all r € D whenever j > 1, proving
that p is the measure as claimed.
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WIGNER TRANSFORMS AND QUASICRYSTALS

e For t — oo we get Z(,’S)EDW)J‘QQ/EU —s) = 0 for every ¢» € D(R).

e The distrubution ¢ — Z(r’s)ED(m)JaQ’Z(r — s) is then null, and suitably localizing ¢
in a neiborhood of the origin we get aﬁé =0.

e Proceeding by recurrence, we get that 2/ = 0 for all r € D whenever j > 1, proving
that p is the measure as claimed.

e The conclusion for i now follows from W(f)(x,w) = W(u)(—w,x). O

_Can we detect quasicrystals using time-frequency dis 17 /24



MATRIX-WIGNER TRANSFORMS

The Wigner transform can be decomposed into three steps:
f.e — fog —r7(fog) — W(f,g) = FAr(f @ 8))

where

(f @8)(x, t) = f(x)g(t),
T(f@g)(x, t) = f(x+ 5)g(x = 5), _
For(f @8)] = Jpa F(x+ 5)g(x — §)e 2" dt.
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MATRIX-WIGNER TRANSFORMS

The Wigner transform can be decomposed into three steps:
f.e — fog —r7(fog) — W(f,g) = FAr(f @ 8))

where

(f ®8)(x, 1) = f(x)g(t),
T(F®E)(x,t) = f(x + 5)g(x — 3), _
FoAr(f @ &) = [pa F(x + 5)g(x — §)e™ ™" dt.
Let's replace the “torsion” 7 in the second step by a general change of variable:
Definition
The Matrix-Wigner transform of f, g € S’(R?) associated with T € GL(2d,R) is
Wr(f, g) = Fo(T(f © 7))

As usual we write Wr(f) for Wr(f, f). (Bayer, Cordero, Grochenig, Trapasso, a.o.)
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MATRIX-WIGNER TRANSFORMS

The Wigner transform can be decomposed into three steps:
f.e — fog —r7(fog) — W(f,g) = FAr(f @ 8))

where

(f ®8)(x, 1) = f(x)g(t),
T(F®E)(x,t) = f(x + 5)g(x — 3), _
FoAr(f @ &) = [pa F(x + 5)g(x — §)e™ ™" dt.
Let's replace the “torsion” 7 in the second step by a general change of variable:
Definition
The Matrix-Wigner transform of f, g € S’(R?) associated with T € GL(2d,R) is
Wr(f, g) = Fo(T(f © 7))

As usual we write Wr(f) for Wr(f, f). (Bayer, Cordero, Grochenig, Trapasso, a.o.)

o It includes most of the basic time-frequency representations
o Unifying framework where we can focus the connections between our results and
those of Lev-Olevskii.
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MATRIX-WIGNER TRANSFORMS

Let us take T : R?? — R invertible linear transformation with inverse
1 (A B
T ( A B ) .

Proposition (P.B., C. Fernandez, A. Galbis, A. Oliaro, (JFA 2022))

detA # 0 = supp p is u.d,

Let I Wr(p,v) be a u.d. set, then
supp Wr (g, v) ! {detB # 0 = suppv is u.d.

detA # 0 = supp7 is u.d,

Let Mosupp Wr(u,v) be a u.d. set, then N
2supp Wr(p, v) {detB # 0 = supp i is u.d.
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MATRIX-WIGNER TRANSFORMS

Some particular cases:
Wigner

1

51d %Id
Id -Id

Mysupp W(u,v) u.d. = supp p,supp v u.d.
(resp. Masupp W(u,v) u.d. = supp fi, supp v u.d)

If 771 = then Wr(u,v) = W(u,v) Wigner transform.
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MATRIX-WIGNER TRANSFORMS

Some particular cases:
Wigner

1

51d %Id
Id -Id

Mysupp W(u,v) u.d. = supp p,supp v u.d.
(resp. Masupp W(u,v) u.d. = supp fi, supp v u.d)

If 771 = then Wr(u,v) = W(u,v) Wigner transform.

Ambiguity Function
Id -Id
=i __
Wr(p,v) = [po e 2™ u(t + x/2)v(t — x/2) dt = A(p, v) is the Ambiguity function and
the same conslusion holds as for Wigner.

(and similarly for the STFT, 7-Wigner, and many other time-frequency representations)
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MATRIX-WIGNER TRANSFORMS

Some particular cases:
Wigner

1

51d %Id
Id -Id

Mysupp W(u,v) u.d. = supp p,supp v u.d.
(resp. Masupp W(u,v) u.d. = supp fi, supp v u.d)

If 771 = ) then Wr(u,v) = W(u,v) Wigner transform.

Ambiguity Function
Id -Id
=i __
Wr(p,v) = [po e 2™ u(t + x/2)v(t — x/2) dt = A(p, v) is the Ambiguity function and
the same conslusion holds as for Wigner.

(and similarly for the STFT, 7-Wigner, and many other time-frequency representations)

Lev-Olevskii (~ Rihaczek transform)

I T = ( a- o ) then Wr(j1,) = Fa(in ® 7)(x,) = p(x)7(),
therefore Lev-Olevskii hypothesis 1 = 3" ) 3ada; 1 =D 505 bpds with A, S u.d. sets

is a particular case of the hypothesis Wr(u,v) = Z(r s)eAxs Cr. sO(r,s) With A, B u.d. sets.

D= s =y
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MATRIX-WIGNER TRANSFORMS

Under slightly more strict conditions on the matrix we have the following generalization
of the Lev-Olevski theorem (in dimension d = 1):
Proposition (P.B., C. Fernandez, A. Galbis, A. Oliaro, (JFA 2022))

Let p,v € S'(R) \ {0}.
Suppose there exist T : R? — R? invertible linear transformation with inverse

T—lz(a 3), 240 b0,

C

such that
Wr(p,v) = Z Crs0(r,s)  with A, B u.d. sets.
(r,s)EAXB

Then p, v, i,V are measures supported in u.d. sets, i.e.

p=> abd, wv=>» bd, [=)Y &b, D= bsds,

resSy, sES, resy SESy

for some u.d. sets S,,,S,, Sz, So (and slowly increasing coefficients a;, b, &;, b; € C).

It follows that p and v are of the form > J.Nﬂ > aerro, Pi(A)dn (for some lattices L,
- J
trigonometric polynomials P;, and 6; € R).
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MATRIX-WIGNER TRANSFORMS

Finally in general dimension d the situation is described by the following two
complementary and mutually exclusive theorems:

Let T be an invertible 2d x 2d matrix of the form

. Av Bo L -1 A B
T_(Co Do)’ with inverse T _<C D)’

and suppose that i € S'(R?) satisfy Wr(u) = 2o (rs)eRxs Crs(r,s) With R, S C RY u.d.
sets.

Theorem (1) (P.B., C.Fernandez, A.Galbis, A.Oliaro; Res. Math., 2025)

If
® sup.cs|crs| < oo for every r € R and sup,cg |¢rs| < oo for every s € S;
o det(By — Do) # 0;
e det(A+ B) #0.

Then p and /i are measures whose supports, A and ¥, are uniformly discrete. If
furthermore Wr is in the Cohen class, then A C R and ¥ C S.

Main examples: Cohen class representations and in particular the Wigner transform
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MATRIX-WIGNER TRANSFORMS

Finally in general dimension d the situation is described by the following two
complementary and mutually exclusive theorems:

Let T be an invertible 2d x 2d matrix of the form

. Av Bo L -1 A B
T_<Co Do)’ with inverse T _(C D)’

and suppose that i € S'(R?) satisfy Wr(u) = 2(r.5)eRxs CrisO(rs) With R, S C R?
discrete (not necessarily u.d.) sets.

Theorem (2) (P.B., C.Fernandez, A.Galbis, A.Oliaro; Res. Math., 2025)

e If By = Do then 1 and i are measures whose supports, A and X, are uniformly
discrete; moreover, there exist invertible d x d matrices M and N such that
AN—NC M(R), ¥ —X C N(S).

e If moreover R or S is uniformly discrete then p = ZJN:1 P; ZAELWJ Ox, where L is a
lattice, §; € R? and Pj(x) is a trigonometric polynomial, i.e. u is a Fourier
quasicrystal.

Main example: Ambiguity function
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THANK YOU !l
AND HAPPY BIRTHDAYS PEPE!!!
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