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Motivation: ultradifferentiable setting

Given

a sequence {Mp}p∈N0 of real positive numbers (N0 = N ∪ {0})
an open subset Ω in Rd

Ultradifferentiable function of class Mp

f ∈ C∞(Ω) is said to be an ultradifferentiable function of class Mp if for every
compact K ⊂⊂ Ω

sup
K

|Dαf | ≤ Ch|α|M|α| ∀α ∈ Nd
0

Beurling case (ultradifferentiable of class (Mp)): ∀h > 0 ∃C > 0
Roumieu case (ultradifferentiable of class {Mp}): ∃h > 0, C > 0

Isotropic case

Derivatives estimated in terms of M|α|

Anisotropic case

Estimate derivatives in terms of Mα
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Associated function in the one-dimensional case

Associated function

ωM(t) := M0 sup
p∈N0

log
tp

Mp
, t > 0.

If lim
p→+∞

M1/p
p = +∞, then1

Proposition (Mandelbrojt, 1952)

Mp = M0 sup
t>0

tp

expωM(t)
, p ∈ N0,

if and only if {Mp}p∈N0 is logarithmically convex, i.e.

M2
p ≤ Mp−1Mp+1, ∀p ∈ N. (1)

1S. Mandelbrojt, Séries adhérentes, Régularisation des suites, Applications, Gauthier-Villars,
Paris, 1952.
H. Komatsu, Ultradistributions I. Structure theorems and a characterization, J. Fac. Sci. Univ.
Tokyo Sect IA Math. 20 (1973), 25-105.
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Multi-dimensional case

d-dimensional case

The analogous result for a sequence {Mα}α∈Nd
0

Mα = M0 sup
s∈(0,+∞)d

sα

expωM(s)
, ∀α ∈ Nd

0 , (2)

had been never proved before

Why?

The classical coordinate-wise logarithmic convexity condition

M2
α ≤ Mα−ejMα+ej , α ∈ Nd

0 , 1 ≤ j ≤ d , αj ≥ 1, (3)

for a sequence {Mα}α∈Nd
0
is not sufficient to obtain (2).
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Why?

The classical coordinate-wise logarithmic convexity condition

M2
α ≤ Mα−ejMα+ej , α ∈ Nd

0 , 1 ≤ j ≤ d , αj ≥ 1, (3)

for a sequence {Mα}α∈Nd
0
is not sufficient to obtain (2).

Example

Mα := eF (α) for F (x , y) = (x + 1)2(y + 1)2

satisfies (3) but not (2)

F (x , y)

not convex in

[0,+∞)2
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Convexity

Convex sequence (1-dimensional case)

{ap}p∈N is convex if ap ≤ 1

2
ap−1 +

1

2
ap+1 ∀p ∈ N ap−1

ap

ap+1

⇔ the polygonal obtained by connecting the points (p, ap) is the graph of a
convex function
⇔ ∃ a convex function F : [0,+∞) → R with F (p) = ap ∀p ∈ N0

N.B. ap = logMp is convex iff {Mp} logarithmically convex: M2
p ≤ Mp−1Mp+1

Convex sequence (d-dimensional case)

{aα}α∈Nd
0
is convex if ∃ convex function F : [0,+∞)d → R with F (α) = aα ∀α

Logarithmically convex sequence (d-dimensional case)

{Mα}α∈Nd
0
is logarithmically convex if aα = logMα is convex:

logMα = F (α) for a convex function F : [0,+∞)d → R
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(Logarithmically) convex minorant

Given {Mα}α∈Nd
0
with lim

|α|→+∞
M1/|α|

α = +∞ (and M0 = 1),

the idea is now to construct the largest logarithmically convex sequence
{M lc

α }α∈Nd
0
with M lc

α ≤ Mα and prove that

M lc
α = sup

s∈(0,+∞)d

sα

expωM(s)
, ∀α ∈ Nd

0 .

We shall do the construction for aα = logMα

The convex minorant of a sequence {aα}α∈Nd
0
is the largest convex sequence

{acα}α∈Nd
0
with acα ≤ aα for all α ∈ Nd

0

Assumptions for the construction

aα > −∞, ∀α ∈ Nd
0

aα may be +∞ at most for a finite number of multi-indices α ∈ Nd
0

a0 ∈ R
lim

|α|→+∞

aα
|α|

= +∞
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Construction by hyperplanes

S := {(α, aα) : α ∈ Nd
0}

L := {f : Rd → R : f is an affine function} = {f (x) = ⟨k , x⟩+ c : k ∈ Rd , c ∈ R}
LS := {f ∈ L : f (α) ≤ aα ∀α ∈ Nd

0} hyperplanes that lie under S

IDEA:
Take the supremum of the hyperplanes that lie under S

F (x) := sup
f∈LS

f (x)

and project each (α, aα) to get the
convex minorant sequence

acα = F (α) (≤ aα)

N.B. F in convex

How to prove that it is the largest
convex function ≤ aα?

aα0

aα1

aα3

aα4

aα6

aα7

aα5aα2

R

Rd

S
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Chiara Boiti (Università di Ferrara, Italy) Construction of the log-convex minorant sequence 7 / 17



Construction by hyperplanes

S := {(α, aα) : α ∈ Nd
0}

L := {f : Rd → R : f is an affine function} = {f (x) = ⟨k , x⟩+ c : k ∈ Rd , c ∈ R}
LS := {f ∈ L : f (α) ≤ aα ∀α ∈ Nd

0} hyperplanes that lie under S

IDEA:
Take the supremum of the hyperplanes that lie under S

F (x) := sup
f∈LS

f (x)

and project each (α, aα) to get the
convex minorant sequence

acα = F (α) (≤ aα)

N.B. F in convex

How to prove that it is the largest
convex function ≤ aα?

aα0

aα1

acα1

aα3

aα4acα3

aα6

aα7

aα5aα2

acα7

R

Rd

S
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Geometric construction in the 1-dimensional case

Hyperplanes that lie under S : straight lines

f ∈ LS ⇔ f (x) = kx + c with k , c ∈ R and f (0) = c ≤ a0

Take fa0,k(x) = a0 + kx (a0 ∈ R)
Rotate around (0, a0) until we meet another point (p, ap) ∈ S : ap = a0 + kp ⇒
choose k0 := infp∈N

ap−a0
p = minp∈N

ap−a0
p =

ap1−a0
p1

(since
ap
p → +∞)

F (x) = sup
f∈LS

f (x) ⇒ F (x) = a0 + k0x =: fa0,k0(x) ∀x ∈ [0, p1]

Then take fap1 ,k(x) = ap1 + k(x − p1), k1 = minp1<p∈N
ap−ap1
p−p1

=
ap2−ap1
p2−p1

F (x) = fap1 ,k1(x) ∀x ∈ [p1, p2]

Convex minorant

acp := F (p) = sup
k∈R

(kp + hk)

hk = inf
p∈N0

(ap − kp) = min
p∈N0

(ap − kp)

a0

ap1

fa0,k ∈ LS

S
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The multi-dimensional case

Theorem (Boiti-Jornet-Oliaro-Schindl)

F (x) = supf∈LS
f (x) is the largest convex function g : [0,+∞)d → R whose

epigraph G+
g contains S , i.e. such that

g(α) ≤ aα ∀α ∈ Nd
0 .

(Idea of the) Proof by descending induction:

g(x) ≥ F (x) since F is convex and F (α) ≤ aα

fix x0 ∈ (0,+∞)d and take (x0, y0) ∈ Gg

G+
g convex ⇒ by Hahn-Banach ∃ hyperplane

y = ⟨k∗, x⟩+ c∗ that leaves G+
g on the same

side of the hyperplane (not vertical since g
convex and x0 interior point)

f ∗(x)=⟨k∗, x⟩+ c∗ ∈ LS ⇒ F (x0)≥ f ∗(x0)=y0=g(x0) ⇒ F (x0)=g(x0)

x0 ∈ ∂[0,+∞)d ⇒ reduce to (d − 1)-dimensional case (trace of F on
{xd = 0} is sup of affine functions on Rd−1 with graph below S ∩ {xd = 0})
recursively led to the 1-dimensional case where the assumption a0 ∈ R
guarantees the conclusion (no vertical lines) □

Chiara Boiti (Università di Ferrara, Italy) Construction of the log-convex minorant sequence 9 / 17



The multi-dimensional case

Theorem (Boiti-Jornet-Oliaro-Schindl)

F (x) = supf∈LS
f (x) is the largest convex function g : [0,+∞)d → R whose

epigraph G+
g contains S , i.e. such that

g(α) ≤ aα ∀α ∈ Nd
0 .

(Idea of the) Proof by descending induction:

g(x) ≥ F (x) since F is convex and F (α) ≤ aα

fix x0 ∈ (0,+∞)d and take (x0, y0) ∈ Gg

G+
g convex ⇒ by Hahn-Banach ∃ hyperplane

y = ⟨k∗, x⟩+ c∗ that leaves G+
g on the same

side of the hyperplane (not vertical since g
convex and x0 interior point)

f ∗(x)=⟨k∗, x⟩+ c∗ ∈ LS ⇒ F (x0)≥ f ∗(x0)=y0=g(x0) ⇒ F (x0)=g(x0)

x0 ∈ ∂[0,+∞)d ⇒ reduce to (d − 1)-dimensional case (trace of F on
{xd = 0} is sup of affine functions on Rd−1 with graph below S ∩ {xd = 0})
recursively led to the 1-dimensional case where the assumption a0 ∈ R
guarantees the conclusion (no vertical lines) □
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The log-convex minorant in the d-dimensional case

{Mα}α∈Nd
0
positive real numbers with lim|α|→+∞ M

1/|α|
α = +∞ (M0 = 1)

The associated function

ωM(t) = sup
α∈Nd

0

log
|tα|
Mα

, t ∈ Rd

lim
|α|→+∞

M1/|α|
α = +∞ ⇒ ωM(t) < +∞

(with the convention that log 0 = −∞)

The log-convex minorant

The log-convex minorant of {Mα}α∈Nd
0
is given by M lc

α := exp acα for α ∈ Nd
0 , with

acα = sup
k∈Rd

(⟨k, α⟩+ hk), hk = inf
α∈Nd

0

(aα − ⟨k, α⟩)

hk =− sup
α∈Nd

0

(⟨k , α⟩−logMα)=− sup
α∈Nd

0

log
e⟨k,α⟩

Mα
=− sup

α∈Nd
0

log
(ek)α

Mα
=−ωM(ek)

M lc
α in terms of the associated function

M lc
α = ea

c
α = esupk (⟨k,α⟩−ωM(ek )) = sup

k∈Rd

(ek)α

expωM(ek)
= sup

s∈(0,+∞)d

sα

expωM(s)
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α∈Nd

0

(aα − ⟨k, α⟩)

hk =− sup
α∈Nd

0

(⟨k , α⟩−logMα)=− sup
α∈Nd

0

log
e⟨k,α⟩

Mα
=− sup

α∈Nd
0

log
(ek)α

Mα
=−ωM(ek)

M lc
α in terms of the associated function

M lc
α = ea

c
α = esupk (⟨k,α⟩−ωM(ek )) = sup

k∈Rd

(ek)α

expωM(ek)
= sup

s∈(0,+∞)d

sα

expωM(s)
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Chiara Boiti (Università di Ferrara, Italy) Construction of the log-convex minorant sequence 10 / 17



Corollary

Theorem (Boiti-Jornet-Oliaro-Schindl)

Let {Mα}α∈Nd
0
be a sequence of positive real numbers satisfying (M0 = 1)

lim
|α|→+∞

M1/|α|
α = +∞.

Then {Mα}α∈Nd
0
is log-convex if and only if

Mα = M0 sup
s∈(0,+∞)d

sα

expωM(s)
, ∀α ∈ Nd

0 .
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Applications: anisotropic ultradifferentiable setting

Weight matrix

M := {(M(λ))λ>0 : M
(λ) = (M(λ)

α )α∈Nd
0
,M

(λ)
0 = 1,M(λ)

α ≤ M(κ)
α ∀α ∈ Nd

0 , λ ≤ κ}

The matrix weighted setting allows to treat at the same time classes in the sense
of Denjoy-Carleman (estimates of the derivatives with a sequence) and in the sense
of Braun, Meise and Taylor2 (estimates of the derivatives via a weight function).

Matrix weighted global ultradifferentiable functions of Roumieu type

S{M}(Rd) := {f ∈ C∞(Rd) : ∃h, λ,C > 0 : sup
α,β∈Nd

0

∥xα∂βf ∥∞
h|α+β|M

(λ)
α+β

≤ C}

Matrix weighted global ultradifferentiable functions of Beurling type

S(M)(Rd) := {f ∈ C∞(Rd) : ∀h, λ > 0∃Ch,λ > 0 : sup
α,β∈Nd

0

∥xα∂βf ∥∞
h|α+β|M

(λ)
α+β

≤ Ch,λ}

2R.W. Braun, R. Meise, B.A. Taylor, Ultradifferentiable functions and Fourier analysis,
Results Math. 17 (1990), no. 3-4, 206-237
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Assumptions

Assumptions in the Roumieu case : (Langenbruch3 for M(λ) = (Mα)α∈Nd
0
)

∀λ > 0∃κ ≥ λ,A ≥ 1 : M
(λ)
α+ej ≤ A|α|+1M(κ)

α ∀α ∈ Nd
0 , 1 ≤ j ≤ d (4)

∀λ > 0∃κ ≥ λ,B,C ,H > 0 : αα/2M
(λ)
β ≤ BC |α|H |α+β|M

(κ)
α+β ∀α, β ∈ Nd

0 (5)

∀λ > 0∃κ ≥ λ,A ≥ 1 : M(λ)
α M

(λ)
β ≤ A|α+β|M

(κ)
α+β ∀α, β ∈ Nd

0 (6)

(4) implies that the space is closed under differential operators

(5) ensures existence of Hermite functions Hγ in the space

(6) implies that the space is closed under multiplication

(5) optimal: H0 in the space and (6) imply (5)

In the 1-dimensional case log-convexity (M0 = 1) implies (6) with A = 1

In the d-dimensional case: Mα = αα/2emax{α2
1,α

2
2} is log-convex and satisfies

(4) and (5) but not (6) (with convention 00 := 1)

3M. Langenbruch, Hermite functions and weighted spaces of generalized functions,
Manuscripta Math. 119, n. 3 (2006), 269-285.
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Importance of Hermite functions

Assumptions in the Beurling case :

∀λ > 0∃0 < κ ≤ λ,A ≥ 1 :

M
(κ)
α+ej ≤ A|α|+1M(λ)

α ∀α ∈ Nd
0 , 1 ≤ j ≤ d (7)

∀λ > 0∃0 < κ ≤ λ,H > 0 : ∀C > 0∃B > 0 :

αα/2M
(κ)
β ≤ BC |α|H |α+β|M

(λ)
α+β ∀α, β ∈ Nd

0 (8)

∀λ > 0∃0 < κ ≤ λ,A ≥ 1 :

M(κ)
α M

(κ)
β ≤ A|α+β|M

(λ)
α+β ∀α, β ∈ Nd

0 . (9)

The delicate question of non-triviality

Let M(λ) = (Mα)α∈Nd
0
.

If ωM(t) = o(t2), as t → +∞,then S(M)(Rd) is nontrivial (all Hermite
functions are contained in this class).
If t2 = O(ωM(t)) then S(M)(Rd) = {0}.
Analogously, in the Roumieu case ωM(t) = O(t2) implies that S{M}(Rd) is

nontrivial but t2 = o(ωM(t)) implies S{M}(Rd) = {0}.
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Characterization of inclusion relations

Theorem (Boiti-Jornet-Oliaro-Schindl)

Let M = {(M(λ))λ>0} and N = {(N(λ))λ>0} be two weight matrices and assume

that M is log-convex (i.e. {M(λ)
α }α is log-convex for all λ). Then:

Let M satisfy (4)-(6) and N satisfy (4)-(5). Then

(a) S{M}(Rd) ⊆ S{N}(Rd) holds (with continuous inclusion);

⇔ (b) M{⪯}N , i.e. ∀λ > 0∃κ > 0,C ≥ 1 : M
(λ)
α ≤ C |α|N

(κ)
α ∀α ∈ Nd

0 .

Let M satisfy (7)-(9) and N satisfy (7)-(8). Then

(a) S(M)(Rd) ⊆ S(N )(Rd) holds (with continuous inclusion);

⇔ (b) M(⪯)N , i.e. ∀λ > 0∃κ > 0,C ≥ 1 : M
(κ)
α ≤ C |α|N

(λ)
α ∀α ∈ Nd

0 .

Let M satisfy (4)-(6) and N satisfy (7)-(8). Then

(a) S{M}(Rd) ⊆ S(N )(Rd) holds (with continuous inclusion);

⇔ (b) M ◁ N , i.e. ∀λ, κ > 0∀h > 0∃C ≥ 1 : M
(λ)
α ≤ Ch|α|N

(κ)
α ∀α ∈ Nd

0 .
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⇔ (b) M ◁ N , i.e. ∀λ, κ > 0∀h > 0∃C ≥ 1 : M
(λ)
α ≤ Ch|α|N

(κ)
α ∀α ∈ Nd

0 .
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Application of M lc
α = sup sα

expωM(s) in the proof

Assuming that the inclusion S(M)(Rd) ⊆ S(N )(Rd) is continuous we first proved
that for all ℓ ∈ N there exist j ∈ N and C ≥ 1 such that

ωN(1/ℓ)(ℓs) ≤ logC + ωM(1/j)(2js), ∀s ∈ (0,+∞)d .

Then

N(1/ℓ)
α ≥ (N(1/ℓ)

α )lc = sup
t∈(0,+∞)d

tα

expωN(1/ℓ)(t)

= sup
s∈(0,+∞)d

(ℓs)α

expωN(1/ℓ)(ℓs)
≥ ℓ|α|

C
sup

s∈(0,+∞)d

sα

expωM(1/j)(2js)

=
ℓ|α|

C
sup

t∈(0,+∞)d

(
t
2j

)α

expωM(1/j)(t)
=

1

C

(
ℓ

2j

)|α|

M(1/j)
α

i.e. M(⪯)N □
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Chiara Boiti (Università di Ferrara, Italy) Construction of the log-convex minorant sequence 17 / 17



Happy Birthday Pepe!!!


	Appendix

