

Construction of the log-convex minorant of a sequence $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$

Chiara Boiti

Università di Ferrara, Italy

International Workshop on Functional Analysis

On the Occasion of the 70th Birthday of José Bonet

Valencia, 17th – 19th June, 2025

Joint work:

C. Boiti, D. Jornet, A. Oliaro, G. Schindl, *Construction of the log-convex minorant of a sequence $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$* , Math. Nachr. **298** (2025), 456-477.

Motivation: ultradifferentiable setting

Given

- a sequence $\{M_p\}_{p \in \mathbb{N}_0}$ of real positive numbers ($\mathbb{N}_0 = \mathbb{N} \cup \{0\}$)
- an open subset Ω in \mathbb{R}^d

Ultradifferentiable function of class M_p

$f \in C^\infty(\Omega)$ is said to be an **ultradifferentiable function of class M_p** if for every compact $K \subset\subset \Omega$

$$\sup_K |D^\alpha f| \leq Ch^{|\alpha|} M_{|\alpha|} \quad \forall \alpha \in \mathbb{N}_0^d$$

Beurling case (ultradifferentiable of **class (M_p)**): $\forall h > 0 \ \exists C > 0$

Roumieu case (ultradifferentiable of **class $\{M_p\}$**): $\exists h > 0, \ C > 0$

Isotropic case

Derivatives estimated in terms of $M_{|\alpha|}$

Anisotropic case

Estimate derivatives in terms of M_α

Motivation: ultradifferentiable setting

Given

- a sequence $\{M_p\}_{p \in \mathbb{N}_0}$ of real positive numbers ($\mathbb{N}_0 = \mathbb{N} \cup \{0\}$)
- an open subset Ω in \mathbb{R}^d

Ultradifferentiable function of class M_p

$f \in C^\infty(\Omega)$ is said to be an **ultradifferentiable function of class M_p** if for every compact $K \subset\subset \Omega$

$$\sup_K |D^\alpha f| \leq Ch^{|\alpha|} M_{|\alpha|} \quad \forall \alpha \in \mathbb{N}_0^d$$

Beurling case (ultradifferentiable of **class (M_p)**): $\forall h > 0 \ \exists C > 0$

Roumieu case (ultradifferentiable of **class $\{M_p\}$**): $\exists h > 0, \ C > 0$

Isotropic case

Derivatives estimated in terms of $M_{|\alpha|}$

Large literature

Anisotropic case

Estimate derivatives in terms of M_α

Motivation: ultradifferentiable setting

Given

- a sequence $\{M_p\}_{p \in \mathbb{N}_0}$ of real positive numbers ($\mathbb{N}_0 = \mathbb{N} \cup \{0\}$)
- an open subset Ω in \mathbb{R}^d

Ultradifferentiable function of class M_p

$f \in C^\infty(\Omega)$ is said to be an **ultradifferentiable function of class M_p** if for every compact $K \subset\subset \Omega$

$$\sup_K |D^\alpha f| \leq Ch^{|\alpha|} M_{|\alpha|} \quad \forall \alpha \in \mathbb{N}_0^d$$

Beurling case (ultradifferentiable of **class (M_p)**): $\forall h > 0 \ \exists C > 0$

Roumieu case (ultradifferentiable of **class $\{M_p\}$**): $\exists h > 0, \ C > 0$

Isotropic case

Derivatives estimated in terms of $M_{|\alpha|}$

Large literature

Anisotropic case

Estimate derivatives in terms of M_α

Limited literature

Associated function in the one-dimensional case

Associated function

$$\omega_M(t) := M_0 \sup_{p \in \mathbb{N}_0} \log \frac{t^p}{M_p}, \quad t > 0.$$

If $\lim_{p \rightarrow +\infty} M_p^{1/p} = +\infty$, then¹

Proposition (Mandelbrojt, 1952)

$$M_p = M_0 \sup_{t>0} \frac{t^p}{\exp \omega_M(t)}, \quad p \in \mathbb{N}_0,$$

if and only if $\{M_p\}_{p \in \mathbb{N}_0}$ is **logarithmically convex**, i.e.

$$M_p^2 \leq M_{p-1} M_{p+1}, \quad \forall p \in \mathbb{N}. \quad (1)$$

¹S. Mandelbrojt, *Séries adhérentes, Régularisation des suites, Applications*, Gauthier-Villars, Paris, 1952.

H. Komatsu, *Ultradistributions I. Structure theorems and a characterization*, J. Fac. Sci. Univ. Tokyo Sect IA Math. **20** (1973), 25-105.

Associated function in the one-dimensional case

Associated function

$$\omega_M(t) := M_0 \sup_{p \in \mathbb{N}_0} \log \frac{t^p}{M_p}, \quad t > 0.$$

If $\lim_{p \rightarrow +\infty} M_p^{1/p} = +\infty$, then¹

Proposition (Mandelbrojt, 1952)

$$M_p = M_0 \sup_{t > 0} \frac{t^p}{\exp \omega_M(t)}, \quad p \in \mathbb{N}_0,$$

if and only if $\{M_p\}_{p \in \mathbb{N}_0}$ is **logarithmically convex**, i.e.

$$M_p^2 \leq M_{p-1} M_{p+1}, \quad \forall p \in \mathbb{N}. \quad (1)$$

¹S. Mandelbrojt, *Séries adhérentes, Régularisation des suites, Applications*, Gauthier-Villars, Paris, 1952.

H. Komatsu, *Ultradistributions I. Structure theorems and a characterization*, J. Fac. Sci. Univ. Tokyo Sect IA Math. **20** (1973), 25-105.

Multi-dimensional case

d -dimensional case

The analogous result for a sequence $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$

$$M_\alpha = M_0 \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_{\mathbf{M}}(s)}, \quad \forall \alpha \in \mathbb{N}_0^d, \quad (2)$$

had been never proved before

Why?

The classical coordinate-wise logarithmic convexity condition

$$M_\alpha^2 \leq M_{\alpha - e_j} M_{\alpha + e_j}, \quad \alpha \in \mathbb{N}_0^d, \quad 1 \leq j \leq d, \quad \alpha_j \geq 1, \quad (3)$$

for a sequence $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is not sufficient to obtain (2).

Multi-dimensional case

d -dimensional case

The analogous result for a sequence $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$

$$M_\alpha = M_0 \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_{\mathbf{M}}(s)}, \quad \forall \alpha \in \mathbb{N}_0^d, \quad (2)$$

had been never proved before

Why?

The classical **coordinate-wise logarithmic convexity** condition

$$M_\alpha^2 \leq M_{\alpha - e_j} M_{\alpha + e_j}, \quad \alpha \in \mathbb{N}_0^d, \quad 1 \leq j \leq d, \quad \alpha_j \geq 1, \quad (3)$$

for a sequence $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is not sufficient to obtain (2).

Multi-dimensional case

d -dimensional case

The analogous result for a sequence $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$

$$M_\alpha = M_0 \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_{\mathbf{M}}(s)}, \quad \forall \alpha \in \mathbb{N}_0^d, \quad (2)$$

had been never proved before

Why?

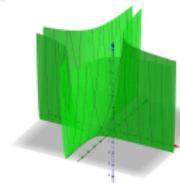
The classical **coordinate-wise logarithmic convexity** condition

$$M_\alpha^2 \leq M_{\alpha - e_j} M_{\alpha + e_j}, \quad \alpha \in \mathbb{N}_0^d, \quad 1 \leq j \leq d, \quad \alpha_j \geq 1, \quad (3)$$

for a sequence $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is not sufficient to obtain (2).

Example

$M_\alpha := e^{F(\alpha)}$ for $F(x, y) = (x + 1)^2(y + 1)^2$
satisfies (3) but not (2)

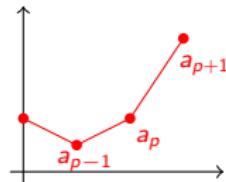


$F(x, y)$
not convex in
 $[0, +\infty)^2$

Convexity

Convex sequence (1-dimensional case)

$\{a_p\}_{p \in \mathbb{N}}$ is **convex** if $a_p \leq \frac{1}{2}a_{p-1} + \frac{1}{2}a_{p+1} \ \forall p \in \mathbb{N}$



- iff the polygonal obtained by connecting the points (p, a_p) is the graph of a convex function
- iff \exists a convex function $F : [0, +\infty) \rightarrow \mathbb{R}$ with $F(p) = a_p \ \forall p \in \mathbb{N}_0$

N.B. $a_p = \log M_p$ is convex iff $\{M_p\}$ logarithmically convex: $M_p^2 \leq M_{p-1}M_{p+1}$

Convex sequence (d -dimensional case)

$\{a_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is **convex** if \exists convex function $F : [0, +\infty)^d \rightarrow \mathbb{R}$ with $F(\alpha) = a_\alpha \ \forall \alpha$

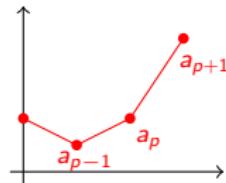
Logarithmically convex sequence (d -dimensional case)

$\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is **logarithmically convex** if $a_\alpha = \log M_\alpha$ is convex:
 $\log M_\alpha = F(\alpha)$ for a convex function $F : [0, +\infty)^d \rightarrow \mathbb{R}$

Convexity

Convex sequence (1-dimensional case)

$\{a_p\}_{p \in \mathbb{N}}$ is **convex** if $a_p \leq \frac{1}{2}a_{p-1} + \frac{1}{2}a_{p+1} \quad \forall p \in \mathbb{N}$



\Leftrightarrow the polygonal obtained by connecting the points (p, a_p) is the graph of a convex function

$\Leftrightarrow \exists$ a convex function $F : [0, +\infty) \rightarrow \mathbb{R}$ with $F(p) = a_p \quad \forall p \in \mathbb{N}_0$

N.B. $a_p = \log M_p$ is convex iff $\{M_p\}$ logarithmically convex: $M_p^2 \leq M_{p-1} M_{p+1}$

Convex sequence (d -dimensional case)

$\{a_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is **convex** if \exists convex function $F : [0, +\infty)^d \rightarrow \mathbb{R}$ with $F(\alpha) = a_\alpha \quad \forall \alpha$

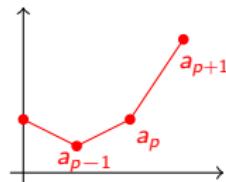
Logarithmically convex sequence (d -dimensional case)

$\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is **logarithmically convex** if $a_\alpha = \log M_\alpha$ is convex:
 $\log M_\alpha = F(\alpha)$ for a convex function $F : [0, +\infty)^d \rightarrow \mathbb{R}$

Convexity

Convex sequence (1-dimensional case)

$\{a_p\}_{p \in \mathbb{N}}$ is **convex** if $a_p \leq \frac{1}{2}a_{p-1} + \frac{1}{2}a_{p+1} \quad \forall p \in \mathbb{N}$



\Leftrightarrow the polygonal obtained by connecting the points (p, a_p) is the graph of a convex function

$\Leftrightarrow \exists$ a convex function $F : [0, +\infty) \rightarrow \mathbb{R}$ with $F(p) = a_p \quad \forall p \in \mathbb{N}_0$

N.B. $a_p = \log M_p$ is convex iff $\{M_p\}$ logarithmically convex: $M_p^2 \leq M_{p-1}M_{p+1}$

Convex sequence (d -dimensional case)

$\{a_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is **convex** if \exists convex function $F : [0, +\infty)^d \rightarrow \mathbb{R}$ with $F(\alpha) = a_\alpha \quad \forall \alpha$

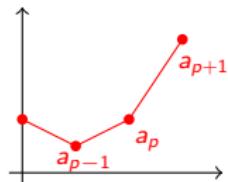
Logarithmically convex sequence (d -dimensional case)

$\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is **logarithmically convex** if $a_\alpha = \log M_\alpha$ is convex:
 $\log M_\alpha = F(\alpha)$ for a convex function $F : [0, +\infty)^d \rightarrow \mathbb{R}$

Convexity

Convex sequence (1-dimensional case)

$\{a_p\}_{p \in \mathbb{N}}$ is **convex** if $a_p \leq \frac{1}{2}a_{p-1} + \frac{1}{2}a_{p+1} \quad \forall p \in \mathbb{N}$



\Leftrightarrow the polygonal obtained by connecting the points (p, a_p) is the graph of a convex function

$\Leftrightarrow \exists$ a convex function $F : [0, +\infty) \rightarrow \mathbb{R}$ with $F(p) = a_p \quad \forall p \in \mathbb{N}_0$

N.B. $a_p = \log M_p$ is convex iff $\{M_p\}$ logarithmically convex: $M_p^2 \leq M_{p-1} M_{p+1}$

Convex sequence (d -dimensional case)

$\{a_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is **convex** if \exists convex function $F : [0, +\infty)^d \rightarrow \mathbb{R}$ with $F(\alpha) = a_\alpha \quad \forall \alpha$

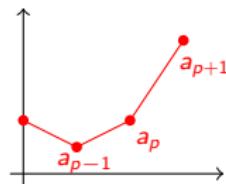
Logarithmically convex sequence (d -dimensional case)

$\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is **logarithmically convex** if $a_\alpha = \log M_\alpha$ is convex:
 $\log M_\alpha = F(\alpha)$ for a convex function $F : [0, +\infty)^d \rightarrow \mathbb{R}$

Convexity

Convex sequence (1-dimensional case)

$\{a_p\}_{p \in \mathbb{N}}$ is **convex** if $a_p \leq \frac{1}{2}a_{p-1} + \frac{1}{2}a_{p+1} \quad \forall p \in \mathbb{N}$



\Leftrightarrow the polygonal obtained by connecting the points (p, a_p) is the graph of a convex function

$\Leftrightarrow \exists$ a convex function $F : [0, +\infty) \rightarrow \mathbb{R}$ with $F(p) = a_p \quad \forall p \in \mathbb{N}_0$

N.B. $a_p = \log M_p$ is convex iff $\{M_p\}$ logarithmically convex: $M_p^2 \leq M_{p-1} M_{p+1}$

Convex sequence (d -dimensional case)

$\{a_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is **convex** if \exists convex function $F : [0, +\infty)^d \rightarrow \mathbb{R}$ with $F(\alpha) = a_\alpha \quad \forall \alpha$

Logarithmically convex sequence (d -dimensional case)

$\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is **logarithmically convex** if $a_\alpha = \log M_\alpha$ is convex:
 $\log M_\alpha = F(\alpha)$ for a convex function $F : [0, +\infty)^d \rightarrow \mathbb{R}$

Ex: $M_\alpha := e^{F(\alpha)}$
 $F(x, y) = (x+1)^2(y+1)^2$
is **not** logarithmically convex

(Logarithmically) convex minorant

Given $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ with $\lim_{|\alpha| \rightarrow +\infty} M_\alpha^{1/|\alpha|} = +\infty$ (and $M_0 = 1$),

the idea is now to construct the largest logarithmically convex sequence $\{M_\alpha^{\text{lc}}\}_{\alpha \in \mathbb{N}_0^d}$ with $M_\alpha^{\text{lc}} \leq M_\alpha$ and prove that

$$M_\alpha^{\text{lc}} = \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_M(s)}, \quad \forall \alpha \in \mathbb{N}_0^d.$$

We shall do the construction for $a_\alpha = \log M_\alpha$

The convex minorant of a sequence $\{a_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is the largest convex sequence $\{a_\alpha^c\}_{\alpha \in \mathbb{N}_0^d}$ with $a_\alpha^c \leq a_\alpha$ for all $\alpha \in \mathbb{N}_0^d$

Assumptions for the construction

- $a_\alpha > -\infty, \quad \forall \alpha \in \mathbb{N}_0^d$
- a_α may be $+\infty$ at most for a finite number of multi-indices $\alpha \in \mathbb{N}_0^d$
- $a_0 \in \mathbb{R}$
- $\lim_{|\alpha| \rightarrow +\infty} \frac{a_\alpha}{|\alpha|} = +\infty$

(Logarithmically) convex minorant

Given $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ with $\lim_{|\alpha| \rightarrow +\infty} M_\alpha^{1/|\alpha|} = +\infty$ (and $M_0 = 1$),

the idea is now to construct the largest logarithmically convex sequence $\{M_\alpha^{\text{lc}}\}_{\alpha \in \mathbb{N}_0^d}$ with $M_\alpha^{\text{lc}} \leq M_\alpha$ and prove that

$$M_\alpha^{\text{lc}} = \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_M(s)}, \quad \forall \alpha \in \mathbb{N}_0^d.$$

We shall do the construction for $a_\alpha = \log M_\alpha$

The convex minorant of a sequence $\{a_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is the largest convex sequence $\{a_\alpha^c\}_{\alpha \in \mathbb{N}_0^d}$ with $a_\alpha^c \leq a_\alpha$ for all $\alpha \in \mathbb{N}_0^d$

Assumptions for the construction

- $a_\alpha > -\infty, \quad \forall \alpha \in \mathbb{N}_0^d$
- a_α may be $+\infty$ at most for a finite number of multi-indices $\alpha \in \mathbb{N}_0^d$
- $a_0 \in \mathbb{R}$
- $\lim_{|\alpha| \rightarrow +\infty} \frac{a_\alpha}{|\alpha|} = +\infty$

(Logarithmically) convex minorant

Given $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ with $\lim_{|\alpha| \rightarrow +\infty} M_\alpha^{1/|\alpha|} = +\infty$ (and $M_0 = 1$),

the idea is now to construct the largest logarithmically convex sequence $\{M_\alpha^{\text{lc}}\}_{\alpha \in \mathbb{N}_0^d}$ with $M_\alpha^{\text{lc}} \leq M_\alpha$ and prove that

$$M_\alpha^{\text{lc}} = \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_M(s)}, \quad \forall \alpha \in \mathbb{N}_0^d.$$

We shall do the construction for $a_\alpha = \log M_\alpha$

The convex minorant of a sequence $\{a_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is the largest convex sequence $\{a_\alpha^c\}_{\alpha \in \mathbb{N}_0^d}$ with $a_\alpha^c \leq a_\alpha$ for all $\alpha \in \mathbb{N}_0^d$

Assumptions for the construction

- $a_\alpha > -\infty, \quad \forall \alpha \in \mathbb{N}_0^d$
- a_α may be $+\infty$ at most for a finite number of multi-indices $\alpha \in \mathbb{N}_0^d$
- $a_0 \in \mathbb{R}$
- $\lim_{|\alpha| \rightarrow +\infty} \frac{a_\alpha}{|\alpha|} = +\infty$

(Logarithmically) convex minorant

Given $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ with $\lim_{|\alpha| \rightarrow +\infty} M_\alpha^{1/|\alpha|} = +\infty$ (and $M_0 = 1$),

the **idea** is now to construct the **largest logarithmically convex sequence** $\{M_\alpha^{\text{lc}}\}_{\alpha \in \mathbb{N}_0^d}$ with $M_\alpha^{\text{lc}} \leq M_\alpha$ and prove that

$$M_\alpha^{\text{lc}} = \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_M(s)}, \quad \forall \alpha \in \mathbb{N}_0^d.$$

We shall do the **construction** for $a_\alpha = \log M_\alpha$

The **convex minorant** of a sequence $\{a_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is the largest convex sequence $\{a_\alpha^c\}_{\alpha \in \mathbb{N}_0^d}$ with $a_\alpha^c \leq a_\alpha$ for all $\alpha \in \mathbb{N}_0^d$

Assumptions for the construction

- $a_\alpha > -\infty, \quad \forall \alpha \in \mathbb{N}_0^d$
- a_α may be $+\infty$ at most for a finite number of multi-indices $\alpha \in \mathbb{N}_0^d$
- $a_0 \in \mathbb{R}$
- $\lim_{|\alpha| \rightarrow +\infty} \frac{a_\alpha}{|\alpha|} = +\infty$

Construction by hyperplanes

$$S := \{(\alpha, a_\alpha) : \alpha \in \mathbb{N}_0^d\}$$

$$\mathcal{L} := \{f : \mathbb{R}^d \rightarrow \mathbb{R} : f \text{ is an affine function}\} = \{f(x) = \langle k, x \rangle + c : k \in \mathbb{R}^d, c \in \mathbb{R}\}$$

$$\mathcal{L}_S := \{f \in \mathcal{L} : f(\alpha) \leq a_\alpha \ \forall \alpha \in \mathbb{N}_0^d\} \quad \text{hyperplanes that lie under } S$$

IDEA:

Take the supremum of the hyperplanes that lie under S

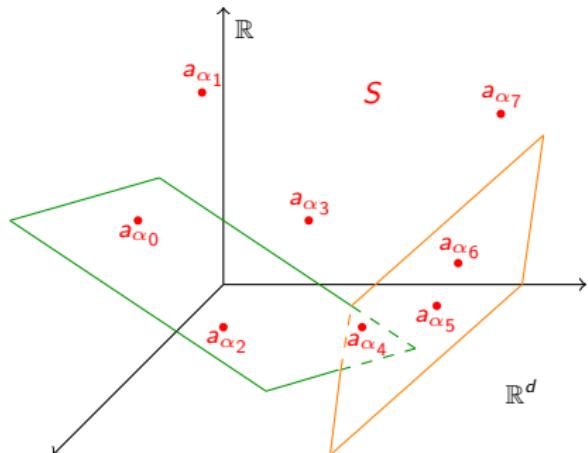
$$F(x) := \sup_{f \in \mathcal{L}_S} f(x)$$

and project each (α, a_α) to get the convex minorant sequence

$$a_\alpha^c = F(\alpha) \quad (\leq a_\alpha)$$

N.B. F is convex

How to prove that it is the largest convex function $\leq a_\alpha$?



Construction by hyperplanes

$$S := \{(\alpha, a_\alpha) : \alpha \in \mathbb{N}_0^d\}$$

$$\mathcal{L} := \{f : \mathbb{R}^d \rightarrow \mathbb{R} : f \text{ is an affine function}\} = \{f(x) = \langle k, x \rangle + c : k \in \mathbb{R}^d, c \in \mathbb{R}\}$$

$$\mathcal{L}_S := \{f \in \mathcal{L} : f(\alpha) \leq a_\alpha \ \forall \alpha \in \mathbb{N}_0^d\} \quad \text{hyperplanes that lie under } S$$

IDEA:

Take the supremum of the hyperplanes that lie under S

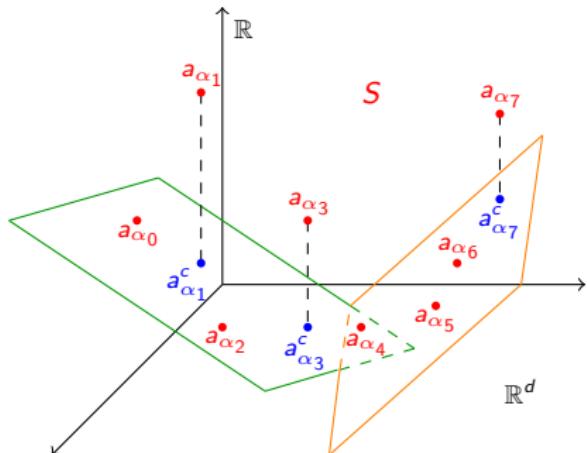
$$F(x) := \sup_{f \in \mathcal{L}_S} f(x)$$

and project each (α, a_α) to get the convex minorant sequence

$$a_\alpha^c = F(\alpha) \quad (\leq a_\alpha)$$

N.B. F is convex

How to prove that it is the largest convex function $\leq a_\alpha$?



Construction by hyperplanes

$$S := \{(\alpha, a_\alpha) : \alpha \in \mathbb{N}_0^d\}$$

$$\mathcal{L} := \{f : \mathbb{R}^d \rightarrow \mathbb{R} : f \text{ is an affine function}\} = \{f(x) = \langle k, x \rangle + c : k \in \mathbb{R}^d, c \in \mathbb{R}\}$$

$$\mathcal{L}_S := \{f \in \mathcal{L} : f(\alpha) \leq a_\alpha \ \forall \alpha \in \mathbb{N}_0^d\} \quad \text{hyperplanes that lie under } S$$

IDEA:

Take the supremum of the hyperplanes that lie under S

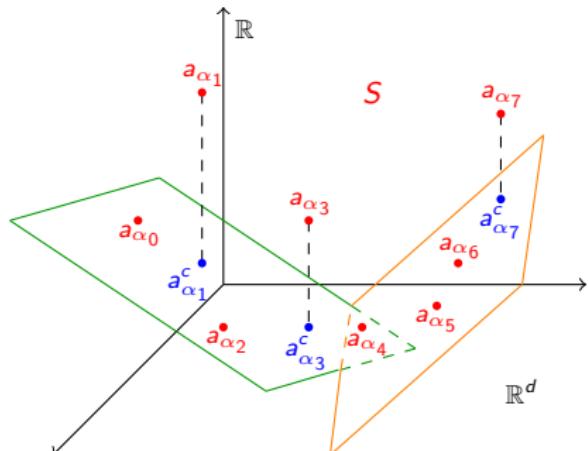
$$F(x) := \sup_{f \in \mathcal{L}_S} f(x)$$

and project each (α, a_α) to get the convex minorant sequence

$$a_\alpha^c = F(\alpha) \quad (\leq a_\alpha)$$

N.B. F in convex

How to prove that it is the largest convex function $\leq a_\alpha$?



Construction by hyperplanes

$$S := \{(\alpha, a_\alpha) : \alpha \in \mathbb{N}_0^d\}$$

$$\mathcal{L} := \{f : \mathbb{R}^d \rightarrow \mathbb{R} : f \text{ is an affine function}\} = \{f(x) = \langle k, x \rangle + c : k \in \mathbb{R}^d, c \in \mathbb{R}\}$$

$$\mathcal{L}_S := \{f \in \mathcal{L} : f(\alpha) \leq a_\alpha \ \forall \alpha \in \mathbb{N}_0^d\} \quad \text{hyperplanes that lie under } S$$

IDEA:

Take the supremum of the hyperplanes that lie under S

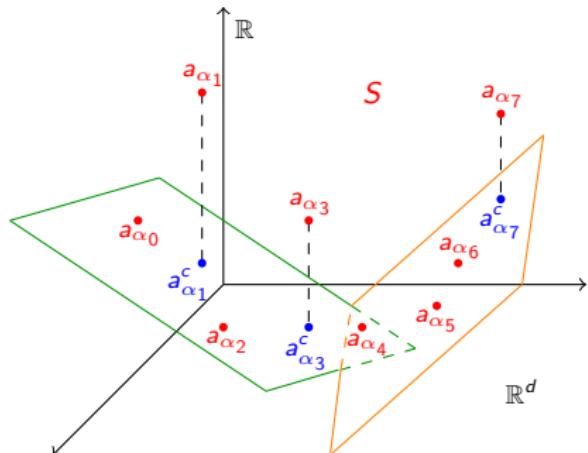
$$F(x) := \sup_{f \in \mathcal{L}_S} f(x)$$

and project each (α, a_α) to get the convex minorant sequence

$$a_\alpha^c = F(\alpha) \quad (\leq a_\alpha)$$

N.B. F is convex

How to prove that it is the largest convex function $\leq a_\alpha$?



Geometric construction in the 1-dimensional case

Hyperplanes that lie under S : straight lines

$f \in \mathcal{L}_S \Leftrightarrow f(x) = kx + c$ with $k, c \in \mathbb{R}$ and $f(0) = c \leq a_0$

Take $f_{a_0, k}(x) = a_0 + kx$ ($a_0 \in \mathbb{R}$)

Rotate around $(0, a_0)$ until we meet another point $(p, a_p) \in S$: $a_p = a_0 + kp \Rightarrow$
choose $k_0 := \inf_{p \in \mathbb{N}} \frac{a_p - a_0}{p} = \min_{p \in \mathbb{N}} \frac{a_p - a_0}{p} = \frac{a_{p_1} - a_0}{p_1}$ (since $\frac{a_p}{p} \rightarrow +\infty$)

$$F(x) = \sup_{f \in \mathcal{L}_S} f(x) \Rightarrow F(x) = a_0 + k_0 x =: f_{a_0, k_0}(x) \quad \forall x \in [0, p_1]$$

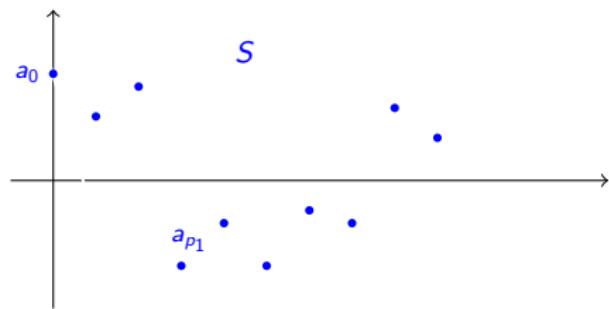
Then take $f_{a_{p_1}, k}(x) = a_{p_1} + k(x - p_1)$, $k_1 = \min_{p_1 < p \in \mathbb{N}} \frac{a_p - a_{p_1}}{p - p_1} = \frac{a_{p_2} - a_{p_1}}{p_2 - p_1}$

$$F(x) = f_{a_{p_1}, k_1}(x) \quad \forall x \in [p_1, p_2]$$

Convex minorant

$$a_p^c := F(p) = \sup_{k \in \mathbb{R}} (kp + h_k)$$

$$h_k = \inf_{p \in \mathbb{N}_0} (a_p - kp) = \min_{p \in \mathbb{N}_0} (a_p - kp)$$



Geometric construction in the 1-dimensional case

Hyperplanes that lie under S : straight lines

$f \in \mathcal{L}_S \Leftrightarrow f(x) = kx + c$ with $k, c \in \mathbb{R}$ and $f(0) = c \leq a_0$

Take $f_{a_0, k}(x) = a_0 + kx$ ($a_0 \in \mathbb{R}$)

Rotate around $(0, a_0)$ until we meet another point $(p, a_p) \in S$: $a_p = a_0 + kp \Rightarrow$
choose $k_0 := \inf_{p \in \mathbb{N}} \frac{a_p - a_0}{p} = \min_{p \in \mathbb{N}} \frac{a_p - a_0}{p} = \frac{a_{p_1} - a_0}{p_1}$ (since $\frac{a_p}{p} \rightarrow +\infty$)

$$F(x) = \sup_{f \in \mathcal{L}_S} f(x) \Rightarrow F(x) = a_0 + k_0 x =: f_{a_0, k_0}(x) \quad \forall x \in [0, p_1]$$

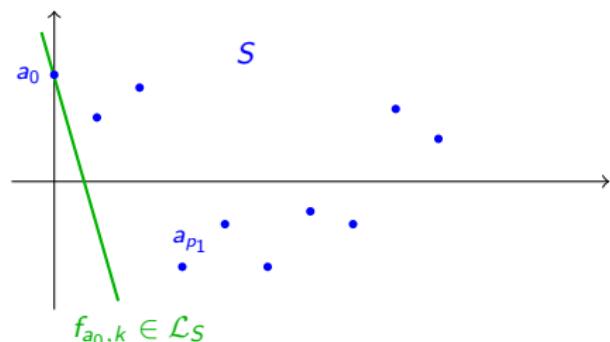
Then take $f_{a_{p_1}, k}(x) = a_{p_1} + k(x - p_1)$, $k_1 = \min_{p_1 < p \in \mathbb{N}} \frac{a_p - a_{p_1}}{p - p_1} = \frac{a_{p_2} - a_{p_1}}{p_2 - p_1}$

$$F(x) = f_{a_{p_1}, k_1}(x) \quad \forall x \in [p_1, p_2]$$

Convex minorant

$$a_p^c := F(p) = \sup_{k \in \mathbb{R}} (kp + h_k)$$

$$h_k = \inf_{p \in \mathbb{N}_0} (a_p - kp) = \min_{p \in \mathbb{N}_0} (a_p - kp)$$



Geometric construction in the 1-dimensional case

Hyperplanes that lie under S : straight lines

$f \in \mathcal{L}_S \Leftrightarrow f(x) = kx + c$ with $k, c \in \mathbb{R}$ and $f(0) = c \leq a_0$

Take $f_{a_0, k}(x) = a_0 + kx$ ($a_0 \in \mathbb{R}$)

Rotate around $(0, a_0)$ until we meet another point $(p, a_p) \in S$: $a_p = a_0 + kp \Rightarrow$
choose $k_0 := \inf_{p \in \mathbb{N}} \frac{a_p - a_0}{p} = \min_{p \in \mathbb{N}} \frac{a_p - a_0}{p} = \frac{a_{p_1} - a_0}{p_1}$ (since $\frac{a_p}{p} \rightarrow +\infty$)

$$F(x) = \sup_{f \in \mathcal{L}_S} f(x) \Rightarrow F(x) = a_0 + k_0 x =: f_{a_0, k_0}(x) \quad \forall x \in [0, p_1]$$

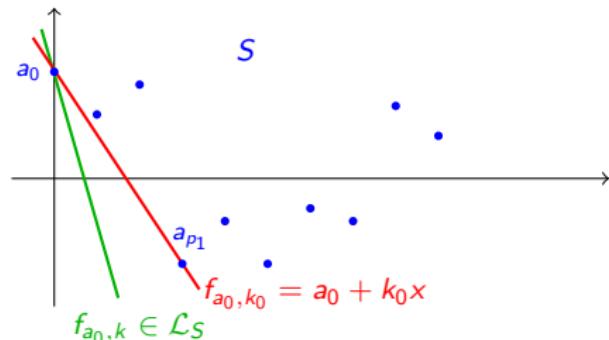
Then take $f_{a_{p_1}, k}(x) = a_{p_1} + k(x - p_1)$, $k_1 = \min_{p_1 < p \in \mathbb{N}} \frac{a_p - a_{p_1}}{p - p_1} = \frac{a_{p_2} - a_{p_1}}{p_2 - p_1}$

$$F(x) = f_{a_{p_1}, k_1}(x) \quad \forall x \in [p_1, p_2]$$

Convex minorant

$$a_p^c := F(p) = \sup_{k \in \mathbb{R}} (kp + h_k)$$

$$h_k = \inf_{p \in \mathbb{N}_0} (a_p - kp) = \min_{p \in \mathbb{N}_0} (a_p - kp)$$



Geometric construction in the 1-dimensional case

Hyperplanes that lie under S : straight lines

$f \in \mathcal{L}_S \Leftrightarrow f(x) = kx + c$ with $k, c \in \mathbb{R}$ and $f(0) = c \leq a_0$

Take $f_{a_0, k}(x) = a_0 + kx$ ($a_0 \in \mathbb{R}$)

Rotate around $(0, a_0)$ until we meet another point $(p, a_p) \in S$: $a_p = a_0 + kp \Rightarrow$
choose $k_0 := \inf_{p \in \mathbb{N}} \frac{a_p - a_0}{p} = \min_{p \in \mathbb{N}} \frac{a_p - a_0}{p} = \frac{a_{p_1} - a_0}{p_1}$ (since $\frac{a_p}{p} \rightarrow +\infty$)

$$F(x) = \sup_{f \in \mathcal{L}_S} f(x) \Rightarrow F(x) = a_0 + k_0 x =: f_{a_0, k_0}(x) \quad \forall x \in [0, p_1]$$

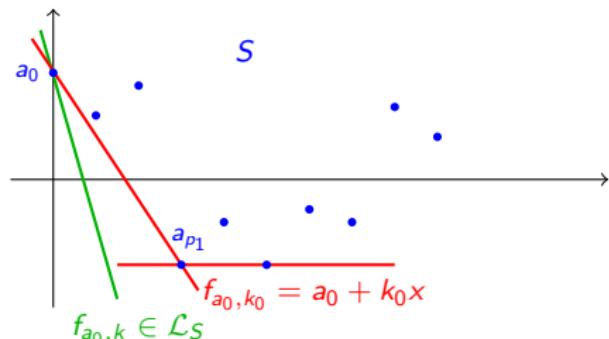
Then take $f_{a_{p_1}, k}(x) = a_{p_1} + k(x - p_1)$, $k_1 = \min_{p_1 < p \in \mathbb{N}} \frac{a_p - a_{p_1}}{p - p_1} = \frac{a_{p_2} - a_{p_1}}{p_2 - p_1}$

$$F(x) = f_{a_{p_1}, k_1}(x) \quad \forall x \in [p_1, p_2]$$

Convex minorant

$$a_p^c := F(p) = \sup_{k \in \mathbb{R}} (kp + h_k)$$

$$h_k = \inf_{p \in \mathbb{N}_0} (a_p - kp) = \min_{p \in \mathbb{N}_0} (a_p - kp)$$



Geometric construction in the 1-dimensional case

Hyperplanes that lie under S : straight lines

$f \in \mathcal{L}_S \Leftrightarrow f(x) = kx + c$ with $k, c \in \mathbb{R}$ and $f(0) = c \leq a_0$

Take $f_{a_0, k}(x) = a_0 + kx$ ($a_0 \in \mathbb{R}$)

Rotate around $(0, a_0)$ until we meet another point $(p, a_p) \in S$: $a_p = a_0 + kp \Rightarrow$
choose $k_0 := \inf_{p \in \mathbb{N}} \frac{a_p - a_0}{p} = \min_{p \in \mathbb{N}} \frac{a_p - a_0}{p} = \frac{a_{p_1} - a_0}{p_1}$ (since $\frac{a_p}{p} \rightarrow +\infty$)

$$F(x) = \sup_{f \in \mathcal{L}_S} f(x) \Rightarrow F(x) = a_0 + k_0 x =: f_{a_0, k_0}(x) \quad \forall x \in [0, p_1]$$

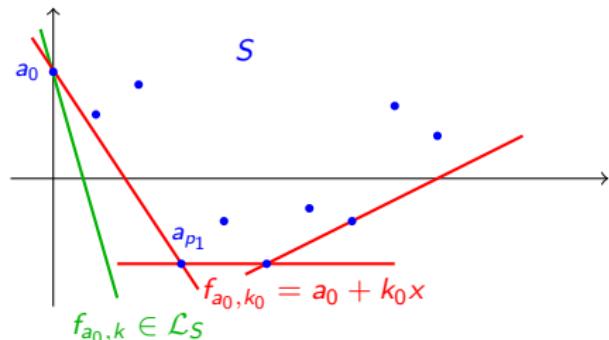
$$\text{Then take } f_{a_{p_1}, k}(x) = a_{p_1} + k(x - p_1), k_1 = \min_{p_1 < p \in \mathbb{N}} \frac{a_p - a_{p_1}}{p - p_1} = \frac{a_{p_2} - a_{p_1}}{p_2 - p_1}$$

$$F(x) = f_{a_{p_1}, k_1}(x) \quad \forall x \in [p_1, p_2]$$

Convex minorant

$$a_p^c := F(p) = \sup_{k \in \mathbb{R}} (kp + h_k)$$

$$h_k = \inf_{p \in \mathbb{N}_0} (a_p - kp) = \min_{p \in \mathbb{N}_0} (a_p - kp)$$



Geometric construction in the 1-dimensional case

Hyperplanes that lie under S : straight lines

$f \in \mathcal{L}_S \Leftrightarrow f(x) = kx + c$ with $k, c \in \mathbb{R}$ and $f(0) = c \leq a_0$

Take $f_{a_0, k}(x) = a_0 + kx$ ($a_0 \in \mathbb{R}$)

Rotate around $(0, a_0)$ until we meet another point $(p, a_p) \in S$: $a_p = a_0 + kp \Rightarrow$
choose $k_0 := \inf_{p \in \mathbb{N}} \frac{a_p - a_0}{p} = \min_{p \in \mathbb{N}} \frac{a_p - a_0}{p} = \frac{a_{p_1} - a_0}{p_1}$ (since $\frac{a_p}{p} \rightarrow +\infty$)

$$F(x) = \sup_{f \in \mathcal{L}_S} f(x) \Rightarrow F(x) = a_0 + k_0 x =: f_{a_0, k_0}(x) \quad \forall x \in [0, p_1]$$

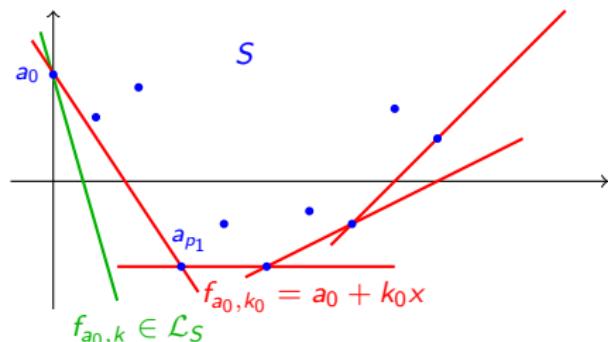
Then take $f_{a_{p_1}, k}(x) = a_{p_1} + k(x - p_1)$, $k_1 = \min_{p_1 < p \in \mathbb{N}} \frac{a_p - a_{p_1}}{p - p_1} = \frac{a_{p_2} - a_{p_1}}{p_2 - p_1}$

$$F(x) = f_{a_{p_1}, k_1}(x) \quad \forall x \in [p_1, p_2]$$

Convex minorant

$$a_p^c := F(p) = \sup_{k \in \mathbb{R}} (kp + h_k)$$

$$h_k = \inf_{p \in \mathbb{N}_0} (a_p - kp) = \min_{p \in \mathbb{N}_0} (a_p - kp)$$



Geometric construction in the 1-dimensional case

Hyperplanes that lie under S : straight lines

$f \in \mathcal{L}_S \Leftrightarrow f(x) = kx + c$ with $k, c \in \mathbb{R}$ and $f(0) = c \leq a_0$

Take $f_{a_0, k}(x) = a_0 + kx$ ($a_0 \in \mathbb{R}$)

Rotate around $(0, a_0)$ until we meet another point $(p, a_p) \in S$: $a_p = a_0 + kp \Rightarrow$
choose $k_0 := \inf_{p \in \mathbb{N}} \frac{a_p - a_0}{p} = \min_{p \in \mathbb{N}} \frac{a_p - a_0}{p} = \frac{a_{p_1} - a_0}{p_1}$ (since $\frac{a_p}{p} \rightarrow +\infty$)

$$F(x) = \sup_{f \in \mathcal{L}_S} f(x) \Rightarrow F(x) = a_0 + k_0 x =: f_{a_0, k_0}(x) \quad \forall x \in [0, p_1]$$

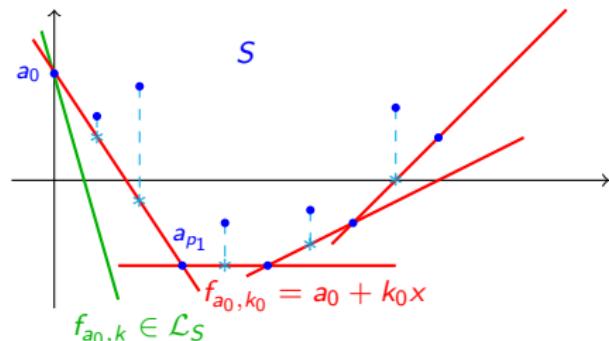
Then take $f_{a_{p_1}, k}(x) = a_{p_1} + k(x - p_1)$, $k_1 = \min_{p_1 < p \in \mathbb{N}} \frac{a_p - a_{p_1}}{p - p_1} = \frac{a_{p_2} - a_{p_1}}{p_2 - p_1}$

$$F(x) = f_{a_{p_1}, k_1}(x) \quad \forall x \in [p_1, p_2]$$

Convex minorant

$$a_p^c := F(p) = \sup_{k \in \mathbb{R}} (kp + h_k)$$

$$h_k = \inf_{p \in \mathbb{N}_0} (a_p - kp) = \min_{p \in \mathbb{N}_0} (a_p - kp)$$



The multi-dimensional case

Theorem (Boiti-Jornet-Oliaro-Schindl)

$F(x) = \sup_{f \in \mathcal{L}_S} f(x)$ is the largest convex function $g : [0, +\infty)^d \rightarrow \mathbb{R}$ whose epigraph G_g^+ contains S , i.e. such that

$$g(\alpha) \leq a_\alpha \quad \forall \alpha \in \mathbb{N}_0^d.$$

(Idea of the) PROOF by descending induction:

- $g(x) \geq F(x)$ since F is convex and $F(\alpha) \leq a_\alpha$
- fix $x^0 \in (0, +\infty)^d$ and take $(x^0, y^0) \in G_g$
- G_g^+ convex \Rightarrow by Hahn-Banach \exists hyperplane $y = \langle k^*, x \rangle + c^*$ that leaves G_g^+ on the same side of the hyperplane (not vertical since g convex and x^0 interior point)
- $f^*(x) = \langle k^*, x \rangle + c^* \in \mathcal{L}_S \Rightarrow F(x^0) \geq f^*(x^0) = y^0 = g(x^0) \Rightarrow F(x^0) = g(x^0)$
- $x^0 \in \partial[0, +\infty)^d \Rightarrow$ reduce to $(d-1)$ -dimensional case (trace of F on $\{x_d = 0\}$ is sup of affine functions on \mathbb{R}^{d-1} with graph below $S \cap \{x_d = 0\}$)
- recursively led to the 1-dimensional case where the assumption $a_0 \in \mathbb{R}$ guarantees the conclusion (no vertical lines)

□

The multi-dimensional case

Theorem (Boiti-Jornet-Oliaro-Schindl)

$F(x) = \sup_{f \in \mathcal{L}_S} f(x)$ is the largest convex function $g : [0, +\infty)^d \rightarrow \mathbb{R}$ whose epigraph G_g^+ contains S , i.e. such that

$$g(\alpha) \leq a_\alpha \quad \forall \alpha \in \mathbb{N}_0^d.$$

(Idea of the) **PROOF** by descending induction:

- $g(x) \geq F(x)$ since F is convex and $F(\alpha) \leq a_\alpha$
- fix $x^0 \in (0, +\infty)^d$ and take $(x^0, y^0) \in G_g$
- G_g^+ convex \Rightarrow by Hahn-Banach \exists hyperplane $y = \langle k^*, x \rangle + c^*$ that leaves G_g^+ on the same side of the hyperplane (not vertical since g convex and x^0 interior point)
- $f^*(x) = \langle k^*, x \rangle + c^* \in \mathcal{L}_S \Rightarrow F(x^0) \geq f^*(x^0) = y^0 = g(x^0) \Rightarrow F(x^0) = g(x^0)$
- $x^0 \in \partial[0, +\infty)^d \Rightarrow$ reduce to $(d-1)$ -dimensional case (trace of F on $\{x_d = 0\}$ is sup of affine functions on \mathbb{R}^{d-1} with graph below $S \cap \{x_d = 0\}$)
- recursively led to the 1-dimensional case where the assumption $a_0 \in \mathbb{R}$ guarantees the conclusion (no vertical lines)

□

The multi-dimensional case

Theorem (Boiti-Jornet-Oliaro-Schindl)

$F(x) = \sup_{f \in \mathcal{L}_S} f(x)$ is the largest convex function $g : [0, +\infty)^d \rightarrow \mathbb{R}$ whose epigraph G_g^+ contains S , i.e. such that

$$g(\alpha) \leq a_\alpha \quad \forall \alpha \in \mathbb{N}_0^d.$$

(Idea of the) PROOF by descending induction:

- $g(x) \geq F(x)$ since F is convex and $F(\alpha) \leq a_\alpha$
- fix $x^0 \in (0, +\infty)^d$ and take $(x^0, y^0) \in G_g$
- G_g^+ convex \Rightarrow by Hahn-Banach \exists hyperplane $y = \langle k^*, x \rangle + c^*$ that leaves G_g^+ on the same side of the hyperplane (not vertical since g convex and x^0 interior point)
- $f^*(x) = \langle k^*, x \rangle + c^* \in \mathcal{L}_S \Rightarrow F(x^0) \geq f^*(x^0) = y^0 = g(x^0) \Rightarrow F(x^0) = g(x^0)$
- $x^0 \in \partial[0, +\infty)^d \Rightarrow$ reduce to $(d-1)$ -dimensional case (trace of F on $\{x_d = 0\}$ is sup of affine functions on \mathbb{R}^{d-1} with graph below $S \cap \{x_d = 0\}$)
- recursively led to the 1-dimensional case where the assumption $a_0 \in \mathbb{R}$ guarantees the conclusion (no vertical lines)

□

The multi-dimensional case

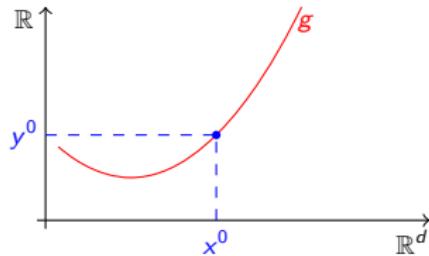
Theorem (Boiti-Jornet-Oliaro-Schindl)

$F(x) = \sup_{f \in \mathcal{L}_S} f(x)$ is the largest convex function $g : [0, +\infty)^d \rightarrow \mathbb{R}$ whose epigraph G_g^+ contains S , i.e. such that

$$g(\alpha) \leq a_\alpha \quad \forall \alpha \in \mathbb{N}_0^d.$$

(Idea of the) PROOF by descending induction:

- $g(x) \geq F(x)$ since F is convex and $F(\alpha) \leq a_\alpha$
- fix $x^0 \in (0, +\infty)^d$ and take $(x^0, y^0) \in G_g$
- G_g^+ convex \Rightarrow by Hahn-Banach \exists hyperplane $y = \langle k^*, x \rangle + c^*$ that leaves G_g^+ on the same side of the hyperplane (not vertical since g convex and x^0 interior point)
- $f^*(x) = \langle k^*, x \rangle + c^* \in \mathcal{L}_S \Rightarrow F(x^0) \geq f^*(x^0) = y^0 = g(x^0) \Rightarrow F(x^0) = g(x^0)$
- $x^0 \in \partial[0, +\infty)^d \Rightarrow$ reduce to $(d-1)$ -dimensional case (trace of F on $\{x_d = 0\}$ is sup of affine functions on \mathbb{R}^{d-1} with graph below $S \cap \{x_d = 0\}$)
- recursively led to the 1-dimensional case where the assumption $a_0 \in \mathbb{R}$ guarantees the conclusion (no vertical lines) □



The multi-dimensional case

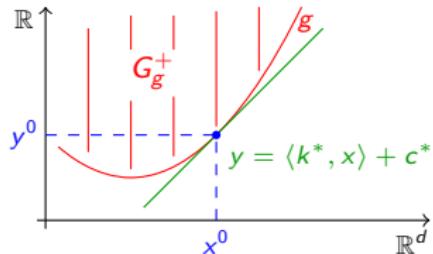
Theorem (Boiti-Jornet-Oliaro-Schindl)

$F(x) = \sup_{f \in \mathcal{L}_S} f(x)$ is the largest convex function $g : [0, +\infty)^d \rightarrow \mathbb{R}$ whose epigraph G_g^+ contains S , i.e. such that

$$g(\alpha) \leq a_\alpha \quad \forall \alpha \in \mathbb{N}_0^d.$$

(Idea of the) PROOF by descending induction:

- $g(x) \geq F(x)$ since F is convex and $F(\alpha) \leq a_\alpha$
- fix $x^0 \in (0, +\infty)^d$ and take $(x^0, y^0) \in G_g$
- G_g^+ convex \Rightarrow by Hahn-Banach \exists hyperplane $y = \langle k^*, x \rangle + c^*$ that leaves G_g^+ on the same side of the hyperplane (not vertical since g convex and x^0 interior point)
- $f^*(x) = \langle k^*, x \rangle + c^* \in \mathcal{L}_S \Rightarrow F(x^0) \geq f^*(x^0) = y^0 = g(x^0) \Rightarrow F(x^0) = g(x^0)$
- $x^0 \in \partial[0, +\infty)^d \Rightarrow$ reduce to $(d-1)$ -dimensional case (trace of F on $\{x_d = 0\}$ is sup of affine functions on \mathbb{R}^{d-1} with graph below $S \cap \{x_d = 0\}$)
- recursively led to the 1-dimensional case where the assumption $a_0 \in \mathbb{R}$ guarantees the conclusion (no vertical lines) □



The multi-dimensional case

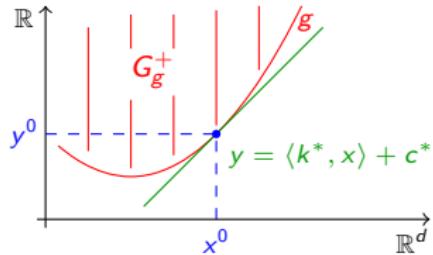
Theorem (Boiti-Jornet-Oliaro-Schindl)

$F(x) = \sup_{f \in \mathcal{L}_S} f(x)$ is the largest convex function $g : [0, +\infty)^d \rightarrow \mathbb{R}$ whose epigraph G_g^+ contains S , i.e. such that

$$g(\alpha) \leq a_\alpha \quad \forall \alpha \in \mathbb{N}_0^d.$$

(Idea of the) PROOF by descending induction:

- $g(x) \geq F(x)$ since F is convex and $F(\alpha) \leq a_\alpha$
- fix $x^0 \in (0, +\infty)^d$ and take $(x^0, y^0) \in G_g$
- G_g^+ convex \Rightarrow by Hahn-Banach \exists hyperplane $y = \langle k^*, x \rangle + c^*$ that leaves G_g^+ on the same side of the hyperplane (not vertical since g convex and x^0 interior point)
- $f^*(x) = \langle k^*, x \rangle + c^* \in \mathcal{L}_S \Rightarrow F(x^0) \geq f^*(x^0) = y^0 = g(x^0) \Rightarrow F(x^0) = g(x^0)$
- $x^0 \in \partial[0, +\infty)^d \Rightarrow$ reduce to $(d-1)$ -dimensional case (trace of F on $\{x_d = 0\}$ is sup of affine functions on \mathbb{R}^{d-1} with graph below $S \cap \{x_d = 0\}$)
- recursively led to the 1-dimensional case where the assumption $a_0 \in \mathbb{R}$ guarantees the conclusion (no vertical lines) □



The multi-dimensional case

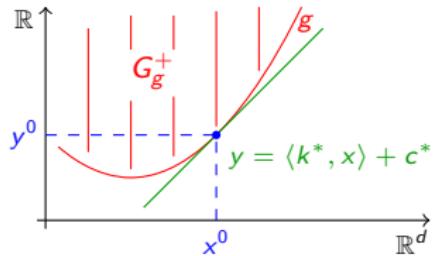
Theorem (Boiti-Jornet-Oliaro-Schindl)

$F(x) = \sup_{f \in \mathcal{L}_S} f(x)$ is the largest convex function $g : [0, +\infty)^d \rightarrow \mathbb{R}$ whose epigraph G_g^+ contains S , i.e. such that

$$g(\alpha) \leq a_\alpha \quad \forall \alpha \in \mathbb{N}_0^d.$$

(Idea of the) PROOF by descending induction:

- $g(x) \geq F(x)$ since F is convex and $F(\alpha) \leq a_\alpha$
- fix $x^0 \in (0, +\infty)^d$ and take $(x^0, y^0) \in G_g$
- G_g^+ convex \Rightarrow by Hahn-Banach \exists hyperplane $y = \langle k^*, x \rangle + c^*$ that leaves G_g^+ on the same side of the hyperplane (not vertical since g convex and x^0 interior point)
- $f^*(x) = \langle k^*, x \rangle + c^* \in \mathcal{L}_S \Rightarrow F(x^0) \geq f^*(x^0) = y^0 = g(x^0) \Rightarrow F(x^0) = g(x^0)$
- $x^0 \in \partial[0, +\infty)^d \Rightarrow$ reduce to $(d-1)$ -dimensional case (trace of F on $\{x_d = 0\}$ is sup of affine functions on \mathbb{R}^{d-1} with graph below $S \cap \{x_d = 0\}$)
- recursively led to the 1-dimensional case where the assumption $a_0 \in \mathbb{R}$ guarantees the conclusion (no vertical lines) □



The multi-dimensional case

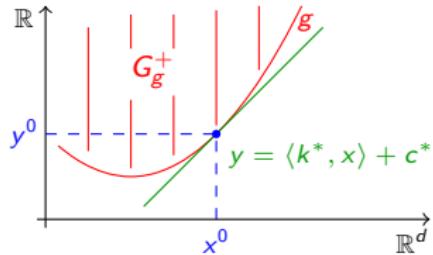
Theorem (Boiti-Jornet-Oliaro-Schindl)

$F(x) = \sup_{f \in \mathcal{L}_S} f(x)$ is the biggest convex function $g : [0, +\infty)^d \rightarrow \mathbb{R}$ whose epigraph G_g^+ contains S , i.e. such that

$$g(\alpha) \leq a_\alpha \quad \forall \alpha \in \mathbb{N}_0^d.$$

(Idea of the) PROOF by descending induction:

- $g(x) \geq F(x)$ since F is convex and $F(\alpha) \leq a_\alpha$
- fix $x^0 \in (0, +\infty)^d$ and take $(x^0, y^0) \in G_g$
- G_g^+ convex \Rightarrow by Hahn-Banach \exists hyperplane $y = \langle k^*, x \rangle + c^*$ that leaves G_g^+ on the same side of the hyperplane (not vertical since g convex and x^0 interior point)
- $f^*(x) = \langle k^*, x \rangle + c^* \in \mathcal{L}_S \Rightarrow F(x^0) \geq f^*(x^0) = y^0 = g(x^0) \Rightarrow F(x^0) = g(x^0)$
- $x^0 \in \partial[0, +\infty)^d \Rightarrow$ reduce to $(d-1)$ -dimensional case (trace of F on $\{x_d = 0\}$ is sup of affine functions on \mathbb{R}^{d-1} with graph below $S \cap \{x_d = 0\}$)
- recursively led to the 1-dimensional case where the assumption $a_0 \in \mathbb{R}$ guarantees the conclusion (no vertical lines) □



The multi-dimensional case

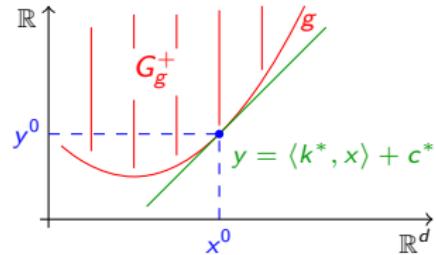
Theorem (Boiti-Jornet-Oliaro-Schindl)

$F(x) = \sup_{f \in \mathcal{L}_S} f(x)$ is the biggest convex function $g : [0, +\infty)^d \rightarrow \mathbb{R}$ whose epigraph G_g^+ contains S , i.e. such that

$$g(\alpha) \leq a_\alpha \quad \forall \alpha \in \mathbb{N}_0^d.$$

(Idea of the) PROOF by descending induction:

- $g(x) \geq F(x)$ since F is convex and $F(\alpha) \leq a_\alpha$
- fix $x^0 \in (0, +\infty)^d$ and take $(x^0, y^0) \in G_g$
- G_g^+ convex \Rightarrow by Hahn-Banach \exists hyperplane $y = \langle k^*, x \rangle + c^*$ that leaves G_g^+ on the same side of the hyperplane (not vertical since g convex and x^0 interior point)
- $f^*(x) = \langle k^*, x \rangle + c^* \in \mathcal{L}_S \Rightarrow F(x^0) \geq f^*(x^0) = y^0 = g(x^0) \Rightarrow F(x^0) = g(x^0)$
- $x^0 \in \partial[0, +\infty)^d \Rightarrow$ reduce to $(d-1)$ -dimensional case (trace of F on $\{x_d = 0\}$ is sup of affine functions on \mathbb{R}^{d-1} with graph below $S \cap \{x_d = 0\}$)
- recursively led to the 1-dimensional case where the assumption $a_0 \in \mathbb{R}$ guarantees the conclusion (no vertical lines) □



The multi-dimensional case

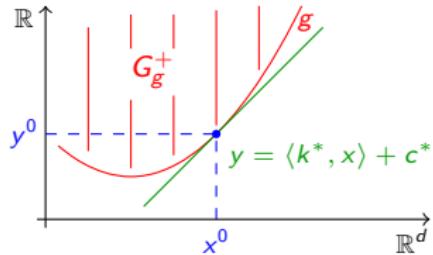
Theorem (Boiti-Jornet-Oliaro-Schindl)

$F(x) = \sup_{f \in \mathcal{L}_S} f(x)$ is the biggest convex function $g : [0, +\infty)^d \rightarrow \mathbb{R}$ whose epigraph G_g^+ contains S , i.e. such that

$$g(\alpha) \leq a_\alpha \quad \forall \alpha \in \mathbb{N}_0^d.$$

(Idea of the) PROOF by descending induction:

- $g(x) \geq F(x)$ since F is convex and $F(\alpha) \leq a_\alpha$
- fix $x^0 \in (0, +\infty)^d$ and take $(x^0, y^0) \in G_g$
- G_g^+ convex \Rightarrow by Hahn-Banach \exists hyperplane $y = \langle k^*, x \rangle + c^*$ that leaves G_g^+ on the same side of the hyperplane (not vertical since g convex and x^0 interior point)
- $f^*(x) = \langle k^*, x \rangle + c^* \in \mathcal{L}_S \Rightarrow F(x^0) \geq f^*(x^0) = y^0 = g(x^0) \Rightarrow F(x^0) = g(x^0)$
- $x^0 \in \partial[0, +\infty)^d \Rightarrow$ reduce to $(d-1)$ -dimensional case (trace of F on $\{x_d = 0\}$ is sup of affine functions on \mathbb{R}^{d-1} with graph below $S \cap \{x_d = 0\}$)
- recursively led to the 1-dimensional case where the assumption $a_0 \in \mathbb{R}$ guarantees the conclusion (no vertical lines) □



The multi-dimensional case

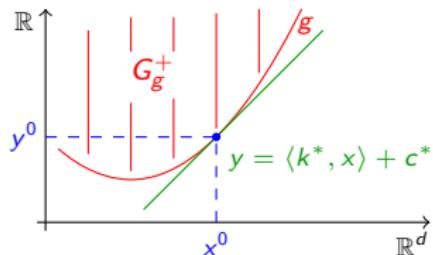
Theorem (Boiti-Jornet-Oliaro-Schindl)

$F(x) = \sup_{f \in \mathcal{L}_S} f(x)$ is the biggest convex function $g : [0, +\infty)^d \rightarrow \mathbb{R}$ whose epigraph G_g^+ contains S , i.e. such that

$$g(\alpha) \leq a_\alpha \quad \forall \alpha \in \mathbb{N}_0^d.$$

(Idea of the) PROOF by descending induction:

- $g(x) \geq F(x)$ since F is convex and $F(\alpha) \leq a_\alpha$
- fix $x^0 \in (0, +\infty)^d$ and take $(x^0, y^0) \in G_g$
- G_g^+ convex \Rightarrow by Hahn-Banach \exists hyperplane $y = \langle k^*, x \rangle + c^*$ that leaves G_g^+ on the same side of the hyperplane (not vertical since g convex and x^0 interior point)
- $f^*(x) = \langle k^*, x \rangle + c^* \in \mathcal{L}_S \Rightarrow F(x^0) \geq f^*(x^0) = y^0 = g(x^0) \Rightarrow F(x^0) = g(x^0)$
- $x^0 \in \partial[0, +\infty)^d \Rightarrow$ reduce to $(d-1)$ -dimensional case (trace of F on $\{x_d = 0\}$ is sup of affine functions on \mathbb{R}^{d-1} with graph below $S \cap \{x_d = 0\}$)
- recursively led to the 1-dimensional case where the assumption $a_0 \in \mathbb{R}$ guarantees the conclusion (no vertical lines) □



The multi-dimensional case

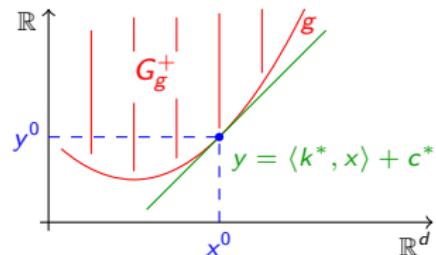
Theorem (Boiti-Jornet-Oliaro-Schindl)

$F(x) = \sup_{f \in \mathcal{L}_S} f(x)$ is the biggest convex function $g : [0, +\infty)^d \rightarrow \mathbb{R}$ whose epigraph G_g^+ contains S , i.e. such that

$$g(\alpha) \leq a_\alpha \quad \forall \alpha \in \mathbb{N}_0^d.$$

(Idea of the) PROOF by descending induction:

- $g(x) \geq F(x)$ since F is convex and $F(\alpha) \leq a_\alpha$
- fix $x^0 \in (0, +\infty)^d$ and take $(x^0, y^0) \in G_g$
- G_g^+ convex \Rightarrow by Hahn-Banach \exists hyperplane $y = \langle k^*, x \rangle + c^*$ that leaves G_g^+ on the same side of the hyperplane (not vertical since g convex and x^0 interior point)
- $f^*(x) = \langle k^*, x \rangle + c^* \in \mathcal{L}_S \Rightarrow F(x^0) \geq f^*(x^0) = y^0 = g(x^0) \Rightarrow F(x^0) = g(x^0)$
- $x^0 \in \partial[0, +\infty)^d \Rightarrow$ reduce to $(d-1)$ -dimensional case (trace of F on $\{x_d = 0\}$ is sup of affine functions on \mathbb{R}^{d-1} with graph below $S \cap \{x_d = 0\}$)
- recursively led to the 1-dimensional case where the assumption $a_0 \in \mathbb{R}$ guarantees the conclusion (no vertical lines) □



The log-convex minorant in the d -dimensional case

$\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ positive real numbers with $\lim_{|\alpha| \rightarrow +\infty} M_\alpha^{1/|\alpha|} = +\infty$ ($M_0 = 1$)

The associated function

$$\omega_M(t) = \sup_{\alpha \in \mathbb{N}_0^d} \log \frac{|t^\alpha|}{M_\alpha}, \quad t \in \mathbb{R}^d$$

$$\lim_{|\alpha| \rightarrow +\infty} M_\alpha^{1/|\alpha|} = +\infty \Rightarrow \omega_M(t) < +\infty$$

(with the convention that $\log 0 = -\infty$)

The log-convex minorant

The log-convex minorant of $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is given by $M_\alpha^{\text{lc}} := \exp a_\alpha^c$ for $\alpha \in \mathbb{N}_0^d$, with

$$a_\alpha^c = \sup_{k \in \mathbb{R}^d} (\langle k, \alpha \rangle + h_k), \quad h_k = \inf_{\alpha \in \mathbb{N}_0^d} (a_\alpha - \langle k, \alpha \rangle)$$

$$h_k = -\sup_{\alpha \in \mathbb{N}_0^d} (\langle k, \alpha \rangle - \log M_\alpha) = -\sup_{\alpha \in \mathbb{N}_0^d} \log \frac{e^{\langle k, \alpha \rangle}}{M_\alpha} = -\sup_{\alpha \in \mathbb{N}_0^d} \log \frac{(e^k)^\alpha}{M_\alpha} = -\omega_M(e^k)$$

M_α^{lc} in terms of the associated function

$$M_\alpha^{\text{lc}} = e^{a_\alpha^c} = e^{\sup_k (\langle k, \alpha \rangle - \omega_M(e^k))} = \sup_{k \in \mathbb{R}^d} \frac{(e^k)^\alpha}{\exp \omega_M(e^k)} = \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_M(s)}$$

The log-convex minorant in the d -dimensional case

$\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ positive real numbers with $\lim_{|\alpha| \rightarrow +\infty} M_\alpha^{1/|\alpha|} = +\infty$ ($M_0 = 1$)

The associated function

$$\omega_M(t) = \sup_{\alpha \in \mathbb{N}_0^d} \log \frac{|t^\alpha|}{M_\alpha}, \quad t \in \mathbb{R}^d$$

$$\lim_{|\alpha| \rightarrow +\infty} M_\alpha^{1/|\alpha|} = +\infty \Rightarrow \omega_M(t) < +\infty$$

(with the convention that $\log 0 = -\infty$)

The log-convex minorant

The log-convex minorant of $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is given by $M_\alpha^{\text{lc}} := \exp a_\alpha^c$ for $\alpha \in \mathbb{N}_0^d$, with

$$a_\alpha^c = \sup_{k \in \mathbb{R}^d} (\langle k, \alpha \rangle + h_k), \quad h_k = \inf_{\alpha \in \mathbb{N}_0^d} (a_\alpha - \langle k, \alpha \rangle)$$

$$h_k = -\sup_{\alpha \in \mathbb{N}_0^d} (\langle k, \alpha \rangle - \log M_\alpha) = -\sup_{\alpha \in \mathbb{N}_0^d} \log \frac{e^{\langle k, \alpha \rangle}}{M_\alpha} = -\sup_{\alpha \in \mathbb{N}_0^d} \log \frac{(e^k)^\alpha}{M_\alpha} = -\omega_M(e^k)$$

M_α^{lc} in terms of the associated function

$$M_\alpha^{\text{lc}} = e^{a_\alpha^c} = e^{\sup_k (\langle k, \alpha \rangle - \omega_M(e^k))} = \sup_{k \in \mathbb{R}^d} \frac{(e^k)^\alpha}{\exp \omega_M(e^k)} = \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_M(s)}$$

The log-convex minorant in the d -dimensional case

$\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ positive real numbers with $\lim_{|\alpha| \rightarrow +\infty} M_\alpha^{1/|\alpha|} = +\infty$ ($M_0 = 1$)

The associated function

$$\omega_{\mathbf{M}}(t) = \sup_{\alpha \in \mathbb{N}_0^d} \log \frac{|t^\alpha|}{M_\alpha}, \quad t \in \mathbb{R}^d$$

$$\lim_{|\alpha| \rightarrow +\infty} M_\alpha^{1/|\alpha|} = +\infty \Rightarrow \omega_{\mathbf{M}}(t) < +\infty$$

$$a_\alpha = \log M_\alpha \Rightarrow \frac{a_\alpha}{|\alpha|} \rightarrow +\infty \Rightarrow \exists a_\alpha^c$$

The log-convex minorant

The log-convex minorant of $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is given by $M_\alpha^{\text{lc}} := \exp a_\alpha^c$ for $\alpha \in \mathbb{N}_0^d$, with

$$a_\alpha^c = \sup_{k \in \mathbb{R}^d} (\langle k, \alpha \rangle + h_k), \quad h_k = \inf_{\alpha \in \mathbb{N}_0^d} (a_\alpha - \langle k, \alpha \rangle)$$

$$h_k = -\sup_{\alpha \in \mathbb{N}_0^d} (\langle k, \alpha \rangle - \log M_\alpha) = -\sup_{\alpha \in \mathbb{N}_0^d} \log \frac{e^{\langle k, \alpha \rangle}}{M_\alpha} = -\sup_{\alpha \in \mathbb{N}_0^d} \log \frac{(e^k)^\alpha}{M_\alpha} = -\omega_{\mathbf{M}}(e^k)$$

M_α^{lc} in terms of the associated function

$$M_\alpha^{\text{lc}} = e^{a_\alpha^c} = e^{\sup_k (\langle k, \alpha \rangle - \omega_{\mathbf{M}}(e^k))} = \sup_{k \in \mathbb{R}^d} \frac{(e^k)^\alpha}{\exp \omega_{\mathbf{M}}(e^k)} = \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_{\mathbf{M}}(s)}$$

The log-convex minorant in the d -dimensional case

$\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ positive real numbers with $\lim_{|\alpha| \rightarrow +\infty} M_\alpha^{1/|\alpha|} = +\infty$ ($M_0 = 1$)

The associated function

$$\omega_M(t) = \sup_{\alpha \in \mathbb{N}_0^d} \log \frac{|t^\alpha|}{M_\alpha}, \quad t \in \mathbb{R}^d$$

$$\lim_{|\alpha| \rightarrow +\infty} M_\alpha^{1/|\alpha|} = +\infty \Rightarrow \omega_M(t) < +\infty$$

$$a_\alpha = \log M_\alpha \Rightarrow \frac{a_\alpha}{|\alpha|} \rightarrow +\infty \Rightarrow \exists a_\alpha^c$$

The log-convex minorant

The log-convex minorant of $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is given by $M_\alpha^{\text{lc}} := \exp a_\alpha^c$ for $\alpha \in \mathbb{N}_0^d$, with

$$a_\alpha^c = \sup_{k \in \mathbb{R}^d} (\langle k, \alpha \rangle + h_k), \quad h_k = \inf_{\alpha \in \mathbb{N}_0^d} (a_\alpha - \langle k, \alpha \rangle)$$

$$h_k = -\sup_{\alpha \in \mathbb{N}_0^d} (\langle k, \alpha \rangle - \log M_\alpha) = -\sup_{\alpha \in \mathbb{N}_0^d} \log \frac{e^{\langle k, \alpha \rangle}}{M_\alpha} = -\sup_{\alpha \in \mathbb{N}_0^d} \log \frac{(e^k)^\alpha}{M_\alpha} = -\omega_M(e^k)$$

M_α^{lc} in terms of the associated function

$$M_\alpha^{\text{lc}} = e^{a_\alpha^c} = e^{\sup_k (\langle k, \alpha \rangle - \omega_M(e^k))} = \sup_{k \in \mathbb{R}^d} \frac{(e^k)^\alpha}{\exp \omega_M(e^k)} = \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_M(s)}$$

The log-convex minorant in the d -dimensional case

$\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ positive real numbers with $\lim_{|\alpha| \rightarrow +\infty} M_\alpha^{1/|\alpha|} = +\infty$ ($M_0 = 1$)

The associated function

$$\omega_M(t) = \sup_{\alpha \in \mathbb{N}_0^d} \log \frac{|t^\alpha|}{M_\alpha}, \quad t \in \mathbb{R}^d$$

$$\lim_{|\alpha| \rightarrow +\infty} M_\alpha^{1/|\alpha|} = +\infty \Rightarrow \omega_M(t) < +\infty$$

$$a_\alpha = \log M_\alpha \Rightarrow \frac{a_\alpha}{|\alpha|} \rightarrow +\infty \Rightarrow \exists a_\alpha^c$$

The log-convex minorant

The log-convex minorant of $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is given by $M_\alpha^{lc} := \exp a_\alpha^c$ for $\alpha \in \mathbb{N}_0^d$, with

$$a_\alpha^c = \sup_{k \in \mathbb{R}^d} (\langle k, \alpha \rangle + h_k), \quad h_k = \inf_{\alpha \in \mathbb{N}_0^d} (a_\alpha - \langle k, \alpha \rangle)$$

$$h_k = - \sup_{\alpha \in \mathbb{N}_0^d} (\langle k, \alpha \rangle - \log M_\alpha) = - \sup_{\alpha \in \mathbb{N}_0^d} \log \frac{e^{\langle k, \alpha \rangle}}{M_\alpha} = - \sup_{\alpha \in \mathbb{N}_0^d} \log \frac{(e^k)^\alpha}{M_\alpha} = -\omega_M(e^k)$$

M_α^{lc} in terms of the associated function

$$M_\alpha^{lc} = e^{a_\alpha^c} = e^{\sup_k (\langle k, \alpha \rangle - \omega_M(e^k))} = \sup_{k \in \mathbb{R}^d} \frac{(e^k)^\alpha}{\exp \omega_M(e^k)} = \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_M(s)}$$

The log-convex minorant in the d -dimensional case

$\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ positive real numbers with $\lim_{|\alpha| \rightarrow +\infty} M_\alpha^{1/|\alpha|} = +\infty$ ($M_0 = 1$)

The associated function

$$\omega_{\mathbf{M}}(t) = \sup_{\alpha \in \mathbb{N}_0^d} \log \frac{|t^\alpha|}{M_\alpha}, \quad t \in \mathbb{R}^d$$

$$\lim_{|\alpha| \rightarrow +\infty} M_\alpha^{1/|\alpha|} = +\infty \Rightarrow \omega_{\mathbf{M}}(t) < +\infty$$

$$a_\alpha = \log M_\alpha \Rightarrow \frac{a_\alpha}{|\alpha|} \rightarrow +\infty \Rightarrow \exists a_\alpha^c$$

The log-convex minorant

The log-convex minorant of $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is given by $M_\alpha^{\text{lc}} := \exp a_\alpha^c$ for $\alpha \in \mathbb{N}_0^d$, with

$$a_\alpha^c = \sup_{k \in \mathbb{R}^d} (\langle k, \alpha \rangle + h_k), \quad h_k = \inf_{\alpha \in \mathbb{N}_0^d} (a_\alpha - \langle k, \alpha \rangle)$$

$$h_k = - \sup_{\alpha \in \mathbb{N}_0^d} (\langle k, \alpha \rangle - \log M_\alpha) = - \sup_{\alpha \in \mathbb{N}_0^d} \log \frac{e^{\langle k, \alpha \rangle}}{M_\alpha} = - \sup_{\alpha \in \mathbb{N}_0^d} \log \frac{(e^k)^\alpha}{M_\alpha} = -\omega_{\mathbf{M}}(e^k)$$

M_α^{lc} in terms of the associated function

$$M_\alpha^{\text{lc}} = e^{a_\alpha^c} = e^{\sup_k (\langle k, \alpha \rangle - \omega_{\mathbf{M}}(e^k))} = \sup_{k \in \mathbb{R}^d} \frac{(e^k)^\alpha}{\exp \omega_{\mathbf{M}}(e^k)} = \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_{\mathbf{M}}(s)}$$

Corollary

Theorem (Boiti-Jornet-Oliaro-Schindl)

Let $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ be a sequence of positive real numbers satisfying ($M_0 = 1$)

$$\lim_{|\alpha| \rightarrow +\infty} M_\alpha^{1/|\alpha|} = +\infty.$$

Then $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is log-convex if and only if

$$M_\alpha = M_0 \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_M(s)}, \quad \forall \alpha \in \mathbb{N}_0^d.$$

Corollary

Theorem (Boiti-Jornet-Oliaro-Schindl)

Let $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ be a sequence of positive real numbers satisfying

$$\lim_{|\alpha| \rightarrow +\infty} M_\alpha^{1/|\alpha|} = +\infty.$$

Then $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$ is log-convex if and only if

$$M_\alpha = M_0 \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_{\mathbf{M}}(s)}, \quad \forall \alpha \in \mathbb{N}_0^d.$$

Applications: anisotropic ultradifferentiable setting

Weight matrix

$$\mathcal{M} := \{(\mathbf{M}^{(\lambda)})_{\lambda > 0} : \mathbf{M}^{(\lambda)} = (M_{\alpha}^{(\lambda)})_{\alpha \in \mathbb{N}_0^d}, M_0^{(\lambda)} = 1, M_{\alpha}^{(\lambda)} \leq M_{\alpha}^{(\kappa)} \forall \alpha \in \mathbb{N}_0^d, \lambda \leq \kappa\}$$

The matrix weighted setting allows to treat at the same time classes in the sense of Denjoy-Carleman (estimates of the derivatives with a sequence) and in the sense of Braun, Meise and Taylor² (estimates of the derivatives via a weight function).

Matrix weighted global ultradifferentiable functions of Roumieu type

$$\mathcal{S}_{\{\mathcal{M}\}}(\mathbb{R}^d) := \{f \in C^{\infty}(\mathbb{R}^d) : \exists h, \lambda, C > 0 : \sup_{\alpha, \beta \in \mathbb{N}_0^d} \frac{\|x^{\alpha} \partial^{\beta} f\|_{\infty}}{h^{|\alpha+\beta|} M_{\alpha+\beta}^{(\lambda)}} \leq C\}$$

Matrix weighted global ultradifferentiable functions of Beurling type

$$\mathcal{S}_{(\mathcal{M})}(\mathbb{R}^d) := \{f \in C^{\infty}(\mathbb{R}^d) : \forall h, \lambda > 0 \exists C_{h, \lambda} > 0 : \sup_{\alpha, \beta \in \mathbb{N}_0^d} \frac{\|x^{\alpha} \partial^{\beta} f\|_{\infty}}{h^{|\alpha+\beta|} M_{\alpha+\beta}^{(\lambda)}} \leq C_{h, \lambda}\}$$

²R.W. Braun, R. Meise, B.A. Taylor, *Ultradifferentiable functions and Fourier analysis*, Results Math. 17 (1990), no. 3-4, 206-237

Applications: anisotropic ultradifferentiable setting

Weight matrix

$$\mathcal{M} := \{(\mathbf{M}^{(\lambda)})_{\lambda > 0} : \mathbf{M}^{(\lambda)} = (M_{\alpha}^{(\lambda)})_{\alpha \in \mathbb{N}_0^d}, M_0^{(\lambda)} = 1, M_{\alpha}^{(\lambda)} \leq M_{\alpha}^{(\kappa)} \forall \alpha \in \mathbb{N}_0^d, \lambda \leq \kappa\}$$

The matrix weighted setting allows to treat at the same time classes in the sense of Denjoy-Carleman (estimates of the derivatives with a sequence) and in the sense of Braun, Meise and Taylor² (estimates of the derivatives via a weight function).

Matrix weighted global ultradifferentiable functions of Roumieu type

$$\mathcal{S}_{\{\mathcal{M}\}}(\mathbb{R}^d) := \{f \in C^{\infty}(\mathbb{R}^d) : \exists h, \lambda, C > 0 : \sup_{\alpha, \beta \in \mathbb{N}_0^d} \frac{\|x^{\alpha} \partial^{\beta} f\|_{\infty}}{h^{|\alpha+\beta|} M_{\alpha+\beta}^{(\lambda)}} \leq C\}$$

Matrix weighted global ultradifferentiable functions of Beurling type

$$\mathcal{S}_{(\mathcal{M})}(\mathbb{R}^d) := \{f \in C^{\infty}(\mathbb{R}^d) : \forall h, \lambda > 0 \exists C_{h, \lambda} > 0 : \sup_{\alpha, \beta \in \mathbb{N}_0^d} \frac{\|x^{\alpha} \partial^{\beta} f\|_{\infty}}{h^{|\alpha+\beta|} M_{\alpha+\beta}^{(\lambda)}} \leq C_{h, \lambda}\}$$

²R.W. Braun, R. Meise, B.A. Taylor, *Ultradifferentiable functions and Fourier analysis*, Results Math. **17** (1990), no. 3-4, 206-237

Applications: anisotropic ultradifferentiable setting

Weight matrix

$$\mathcal{M} := \{(\mathbf{M}^{(\lambda)})_{\lambda > 0} : \mathbf{M}^{(\lambda)} = (M_{\alpha}^{(\lambda)})_{\alpha \in \mathbb{N}_0^d}, M_0^{(\lambda)} = 1, M_{\alpha}^{(\lambda)} \leq M_{\alpha}^{(\kappa)} \forall \alpha \in \mathbb{N}_0^d, \lambda \leq \kappa\}$$

The matrix weighted setting allows to treat at the same time classes in the sense of Denjoy-Carleman (estimates of the derivatives with a sequence) and in the sense of Braun, Meise and Taylor² (estimates of the derivatives via a weight function).

Matrix weighted global ultradifferentiable functions of Roumieu type

$$\mathcal{S}_{\{\mathcal{M}\}}(\mathbb{R}^d) := \{f \in C^{\infty}(\mathbb{R}^d) : \exists h, \lambda, C > 0 : \sup_{\alpha, \beta \in \mathbb{N}_0^d} \frac{\|x^{\alpha} \partial^{\beta} f\|_{\infty}}{h^{|\alpha+\beta|} M_{\alpha+\beta}^{(\lambda)}} \leq C\}$$

Matrix weighted global ultradifferentiable functions of Beurling type

$$\mathcal{S}_{(\mathcal{M})}(\mathbb{R}^d) := \{f \in C^{\infty}(\mathbb{R}^d) : \forall h, \lambda > 0 \exists C_{h, \lambda} > 0 : \sup_{\alpha, \beta \in \mathbb{N}_0^d} \frac{\|x^{\alpha} \partial^{\beta} f\|_{\infty}}{h^{|\alpha+\beta|} M_{\alpha+\beta}^{(\lambda)}} \leq C_{h, \lambda}\}$$

²R.W. Braun, R. Meise, B.A. Taylor, *Ultradifferentiable functions and Fourier analysis*, Results Math. **17** (1990), no. 3-4, 206-237

Applications: anisotropic ultradifferentiable setting

Weight matrix

$$\mathcal{M} := \{(\mathbf{M}^{(\lambda)})_{\lambda > 0} : \mathbf{M}^{(\lambda)} = (M_{\alpha}^{(\lambda)})_{\alpha \in \mathbb{N}_0^d}, M_0^{(\lambda)} = 1, M_{\alpha}^{(\lambda)} \leq M_{\alpha}^{(\kappa)} \forall \alpha \in \mathbb{N}_0^d, \lambda \leq \kappa\}$$

The matrix weighted setting allows to treat at the same time classes in the sense of Denjoy-Carleman (estimates of the derivatives with a sequence) and in the sense of Braun, Meise and Taylor² (estimates of the derivatives via a weight function).

Matrix weighted global ultradifferentiable functions of Roumieu type

$$\mathcal{S}_{\{\mathcal{M}\}}(\mathbb{R}^d) := \{f \in C^{\infty}(\mathbb{R}^d) : \exists h, \lambda, C > 0 : \sup_{\alpha, \beta \in \mathbb{N}_0^d} \frac{\|x^{\alpha} \partial^{\beta} f\|_{\infty}}{h^{|\alpha+\beta|} M_{\alpha+\beta}^{(\lambda)}} \leq C\}$$

Matrix weighted global ultradifferentiable functions of Beurling type

$$\mathcal{S}_{(\mathcal{M})}(\mathbb{R}^d) := \{f \in C^{\infty}(\mathbb{R}^d) : \forall h, \lambda > 0 \exists C_{h, \lambda} > 0 : \sup_{\alpha, \beta \in \mathbb{N}_0^d} \frac{\|x^{\alpha} \partial^{\beta} f\|_{\infty}}{h^{|\alpha+\beta|} M_{\alpha+\beta}^{(\lambda)}} \leq C_{h, \lambda}\}$$

²R.W. Braun, R. Meise, B.A. Taylor, *Ultradifferentiable functions and Fourier analysis*, Results Math. **17** (1990), no. 3-4, 206-237

Assumptions

ASSUMPTIONS in the Roumieu case : (Langenbruch³ for $\mathbf{M}^{(\lambda)} = (M_\alpha)_{\alpha \in \mathbb{N}_0^d}$)

$$\forall \lambda > 0 \exists \kappa \geq \lambda, A \geq 1 : M_{\alpha+e_j}^{(\lambda)} \leq A^{|\alpha|+1} M_\alpha^{(\kappa)} \quad \forall \alpha \in \mathbb{N}_0^d, 1 \leq j \leq d \quad (4)$$

$$\forall \lambda > 0 \exists \kappa \geq \lambda, B, C, H > 0 : \alpha^{\alpha/2} M_\beta^{(\lambda)} \leq BC^{|\alpha|} H^{|\alpha+\beta|} M_{\alpha+\beta}^{(\kappa)} \quad \forall \alpha, \beta \in \mathbb{N}_0^d \quad (5)$$

$$\forall \lambda > 0 \exists \kappa \geq \lambda, A \geq 1 : M_\alpha^{(\lambda)} M_\beta^{(\lambda)} \leq A^{|\alpha+\beta|} M_{\alpha+\beta}^{(\kappa)} \quad \forall \alpha, \beta \in \mathbb{N}_0^d \quad (6)$$

- (4) implies that the space is closed under differential operators
- (5) ensures existence of Hermite functions H_γ in the space
- (6) implies that the space is closed under multiplication
- (5) optimal: H_0 in the space and (6) imply (5)

- In the 1-dimensional case log-convexity ($M_0 = 1$) implies (6) with $A = 1$
- In the d -dimensional case: $M_\alpha = \alpha^{\alpha/2} e^{\max\{\alpha_1^2, \alpha_2^2\}}$ is log-convex and satisfies (4) and (5) but not (6) (with convention $0^0 := 1$)

³M. Langenbruch, *Hermite functions and weighted spaces of generalized functions*, Manuscripta Math. 119, n. 3 (2006), 269-285.

Assumptions

ASSUMPTIONS in the Roumieu case : (Langenbruch³ for $\mathbf{M}^{(\lambda)} = (M_\alpha)_{\alpha \in \mathbb{N}_0^d}$)

$$\forall \lambda > 0 \exists \kappa \geq \lambda, A \geq 1 : M_{\alpha+e_j}^{(\lambda)} \leq A^{|\alpha|+1} M_\alpha^{(\kappa)} \quad \forall \alpha \in \mathbb{N}_0^d, 1 \leq j \leq d \quad (4)$$

$$\forall \lambda > 0 \exists \kappa \geq \lambda, B, C, H > 0 : \alpha^{\alpha/2} M_\beta^{(\lambda)} \leq BC^{|\alpha|} H^{|\alpha+\beta|} M_{\alpha+\beta}^{(\kappa)} \quad \forall \alpha, \beta \in \mathbb{N}_0^d \quad (5)$$

$$\forall \lambda > 0 \exists \kappa \geq \lambda, A \geq 1 : M_\alpha^{(\lambda)} M_\beta^{(\lambda)} \leq A^{|\alpha+\beta|} M_{\alpha+\beta}^{(\kappa)} \quad \forall \alpha, \beta \in \mathbb{N}_0^d \quad (6)$$

- (4) implies that the space is closed under differential operators
- (5) ensures existence of Hermite functions H_γ in the space
- (6) implies that the space is closed under multiplication
- (5) optimal: H_0 in the space and (6) imply (5)

- In the 1-dimensional case log-convexity ($M_0 = 1$) implies (6) with $A = 1$
- In the d -dimensional case: $M_\alpha = \alpha^{\alpha/2} e^{\max\{\alpha_1^2, \alpha_2^2\}}$ is log-convex and satisfies (4) and (5) but not (6) (with convention $0^0 := 1$)

³M. Langenbruch, *Hermite functions and weighted spaces of generalized functions*, Manuscripta Math. 119, n. 3 (2006), 269-285.

Assumptions

ASSUMPTIONS in the Roumieu case : (Langenbruch³ for $\mathbf{M}^{(\lambda)} = (M_\alpha)_{\alpha \in \mathbb{N}_0^d}$)

$$\forall \lambda > 0 \exists \kappa \geq \lambda, A \geq 1 : M_{\alpha+e_j}^{(\lambda)} \leq A^{|\alpha|+1} M_\alpha^{(\kappa)} \quad \forall \alpha \in \mathbb{N}_0^d, 1 \leq j \leq d \quad (4)$$

$$\forall \lambda > 0 \exists \kappa \geq \lambda, B, C, H > 0 : \alpha^{\alpha/2} M_\beta^{(\lambda)} \leq BC^{|\alpha|} H^{|\alpha+\beta|} M_{\alpha+\beta}^{(\kappa)} \quad \forall \alpha, \beta \in \mathbb{N}_0^d \quad (5)$$

$$\forall \lambda > 0 \exists \kappa \geq \lambda, A \geq 1 : M_\alpha^{(\lambda)} M_\beta^{(\lambda)} \leq A^{|\alpha+\beta|} M_{\alpha+\beta}^{(\kappa)} \quad \forall \alpha, \beta \in \mathbb{N}_0^d \quad (6)$$

- (4) implies that the space is closed under differential operators
- (5) ensures existence of Hermite functions H_γ in the space
- (6) implies that the space is closed under multiplication
- (5) optimal: H_0 in the space and (6) imply (5)

- In the 1-dimensional case log-convexity ($M_0 = 1$) implies (6) with $A = 1$
- In the d -dimensional case: $M_\alpha = \alpha^{\alpha/2} e^{\max\{\alpha_1^2, \alpha_2^2\}}$ is log-convex and satisfies (4) and (5) but not (6) (with convention $0^0 := 1$)

³M. Langenbruch, *Hermite functions and weighted spaces of generalized functions*, Manuscripta Math. 119, n. 3 (2006), 269-285.

Assumptions

ASSUMPTIONS in the Roumieu case : (Langenbruch³ for $\mathbf{M}^{(\lambda)} = (M_\alpha)_{\alpha \in \mathbb{N}_0^d}$)

$$\forall \lambda > 0 \exists \kappa \geq \lambda, A \geq 1 : M_{\alpha+e_j}^{(\lambda)} \leq A^{|\alpha|+1} M_\alpha^{(\kappa)} \quad \forall \alpha \in \mathbb{N}_0^d, 1 \leq j \leq d \quad (4)$$

$$\forall \lambda > 0 \exists \kappa \geq \lambda, B, C, H > 0 : \alpha^{\alpha/2} M_\beta^{(\lambda)} \leq BC^{|\alpha|} H^{|\alpha+\beta|} M_{\alpha+\beta}^{(\kappa)} \quad \forall \alpha, \beta \in \mathbb{N}_0^d \quad (5)$$

$$\forall \lambda > 0 \exists \kappa \geq \lambda, A \geq 1 : M_\alpha^{(\lambda)} M_\beta^{(\lambda)} \leq A^{|\alpha+\beta|} M_{\alpha+\beta}^{(\kappa)} \quad \forall \alpha, \beta \in \mathbb{N}_0^d \quad (6)$$

- (4) implies that the space is closed under differential operators
- (5) ensures existence of Hermite functions H_γ in the space
- (6) implies that the space is closed under multiplication
- (5) optimal: H_0 in the space and (6) imply (5)

- In the 1-dimensional case log-convexity ($M_0 = 1$) implies (6) with $A = 1$
- In the d -dimensional case: $M_\alpha = \alpha^{\alpha/2} e^{\max\{\alpha_1^2, \alpha_2^2\}}$ is log-convex and satisfies (4) and (5) but not (6) (with convention $0^0 := 1$)

³M. Langenbruch, *Hermite functions and weighted spaces of generalized functions*, Manuscripta Math. 119, n. 3 (2006), 269-285.

Assumptions

ASSUMPTIONS in the Roumieu case : (Langenbruch³ for $\mathbf{M}^{(\lambda)} = (M_\alpha)_{\alpha \in \mathbb{N}_0^d}$)

$$\forall \lambda > 0 \exists \kappa \geq \lambda, A \geq 1 : M_{\alpha+e_j}^{(\lambda)} \leq A^{|\alpha|+1} M_\alpha^{(\kappa)} \quad \forall \alpha \in \mathbb{N}_0^d, 1 \leq j \leq d \quad (4)$$

$$\forall \lambda > 0 \exists \kappa \geq \lambda, B, C, H > 0 : \alpha^{\alpha/2} M_\beta^{(\lambda)} \leq BC^{|\alpha|} H^{|\alpha+\beta|} M_{\alpha+\beta}^{(\kappa)} \quad \forall \alpha, \beta \in \mathbb{N}_0^d \quad (5)$$

$$\forall \lambda > 0 \exists \kappa \geq \lambda, A \geq 1 : M_\alpha^{(\lambda)} M_\beta^{(\lambda)} \leq A^{|\alpha+\beta|} M_{\alpha+\beta}^{(\kappa)} \quad \forall \alpha, \beta \in \mathbb{N}_0^d \quad (6)$$

- (4) implies that the space is closed under differential operators
- (5) ensures existence of Hermite functions H_γ in the space
- (6) implies that the space is closed under multiplication
- (5) optimal: H_0 in the space and (6) imply (5)

- In the 1-dimensional case log-convexity ($M_0 = 1$) implies (6) with $A = 1$
- In the d -dimensional case: $M_\alpha = \alpha^{\alpha/2} e^{\max\{\alpha_1^2, \alpha_2^2\}}$ is log-convex and satisfies (4) and (5) but not (6) (with convention $0^0 := 1$)

³M. Langenbruch, *Hermite functions and weighted spaces of generalized functions*, Manuscripta Math. 119, n. 3 (2006), 269-285.

Assumptions

ASSUMPTIONS in the Roumieu case : (Langenbruch³ for $\mathbf{M}^{(\lambda)} = (M_\alpha)_{\alpha \in \mathbb{N}_0^d}$)

$$\forall \lambda > 0 \exists \kappa \geq \lambda, A \geq 1 : M_{\alpha+e_j}^{(\lambda)} \leq A^{|\alpha|+1} M_\alpha^{(\kappa)} \quad \forall \alpha \in \mathbb{N}_0^d, 1 \leq j \leq d \quad (4)$$

$$\forall \lambda > 0 \exists \kappa \geq \lambda, B, C, H > 0 : \alpha^{\alpha/2} M_\beta^{(\lambda)} \leq BC^{|\alpha|} H^{|\alpha+\beta|} M_{\alpha+\beta}^{(\kappa)} \quad \forall \alpha, \beta \in \mathbb{N}_0^d \quad (5)$$

$$\forall \lambda > 0 \exists \kappa \geq \lambda, A \geq 1 : M_\alpha^{(\lambda)} M_\beta^{(\lambda)} \leq A^{|\alpha+\beta|} M_{\alpha+\beta}^{(\kappa)} \quad \forall \alpha, \beta \in \mathbb{N}_0^d \quad (6)$$

- (4) implies that the space is closed under differential operators
- (5) ensures existence of Hermite functions H_γ in the space
- (6) implies that the space is closed under multiplication
- (5) optimal: H_0 in the space and (6) imply (5)

- In the 1-dimensional case log-convexity ($M_0 = 1$) implies (6) with $A = 1$
- In the d -dimensional case: $M_\alpha = \alpha^{\alpha/2} e^{\max\{\alpha_1^2, \alpha_2^2\}}$ is log-convex and satisfies (4) and (5) but not (6) (with convention $0^0 := 1$)

³M. Langenbruch, *Hermite functions and weighted spaces of generalized functions*, Manuscripta Math. 119, n. 3 (2006), 269-285.

Importance of Hermite functions

ASSUMPTIONS in the Beurling case :

$\forall \lambda > 0 \exists 0 < \kappa \leq \lambda, A \geq 1 :$

$$M_{\alpha+e_j}^{(\kappa)} \leq A^{|\alpha|+1} M_{\alpha}^{(\lambda)} \quad \forall \alpha \in \mathbb{N}_0^d, 1 \leq j \leq d \quad (7)$$

$\forall \lambda > 0 \exists 0 < \kappa \leq \lambda, H > 0 : \forall C > 0 \exists B > 0 :$

$$\alpha^{\alpha/2} M_{\beta}^{(\kappa)} \leq BC^{|\alpha|} H^{|\alpha+\beta|} M_{\alpha+\beta}^{(\lambda)} \quad \forall \alpha, \beta \in \mathbb{N}_0^d \quad (8)$$

$\forall \lambda > 0 \exists 0 < \kappa \leq \lambda, A \geq 1 :$

$$M_{\alpha}^{(\kappa)} M_{\beta}^{(\kappa)} \leq A^{|\alpha+\beta|} M_{\alpha+\beta}^{(\lambda)} \quad \forall \alpha, \beta \in \mathbb{N}_0^d. \quad (9)$$

The delicate question of non-triviality

Let $\mathbf{M}^{(\lambda)} = (M_{\alpha})_{\alpha \in \mathbb{N}_0^d}$.

- If $\omega_{\mathbf{M}}(t) = o(t^2)$, as $t \rightarrow +\infty$, then $\mathcal{S}_{(\mathbf{M})}(\mathbb{R}^d)$ is nontrivial (all Hermite functions are contained in this class).
If $t^2 = O(\omega_{\mathbf{M}}(t))$ then $\mathcal{S}_{(\mathbf{M})}(\mathbb{R}^d) = \{0\}$.
- Analogously, in the Roumieu case $\omega_{\mathbf{M}}(t) = O(t^2)$ implies that $\mathcal{S}_{\{\mathbf{M}\}}(\mathbb{R}^d)$ is nontrivial but $t^2 = o(\omega_{\mathbf{M}}(t))$ implies $\mathcal{S}_{\{\mathbf{M}\}}(\mathbb{R}^d) = \{0\}$.

Importance of Hermite functions

ASSUMPTIONS in the Beurling case :

$\forall \lambda > 0 \exists 0 < \kappa \leq \lambda, A \geq 1 :$

$$M_{\alpha+e_j}^{(\kappa)} \leq A^{|\alpha|+1} M_\alpha^{(\lambda)} \quad \forall \alpha \in \mathbb{N}_0^d, 1 \leq j \leq d \quad (7)$$

$\forall \lambda > 0 \exists 0 < \kappa \leq \lambda, H > 0 : \forall C > 0 \exists B > 0 :$

$$\alpha^{\alpha/2} M_\beta^{(\kappa)} \leq BC^{|\alpha|} H^{|\alpha+\beta|} M_{\alpha+\beta}^{(\lambda)} \quad \forall \alpha, \beta \in \mathbb{N}_0^d \quad (8)$$

$\forall \lambda > 0 \exists 0 < \kappa \leq \lambda, A \geq 1 :$

$$M_\alpha^{(\kappa)} M_\beta^{(\kappa)} \leq A^{|\alpha+\beta|} M_{\alpha+\beta}^{(\lambda)} \quad \forall \alpha, \beta \in \mathbb{N}_0^d. \quad (9)$$

The delicate question of non-triviality

Let $\mathbf{M}^{(\lambda)} = (M_\alpha)_{\alpha \in \mathbb{N}_0^d}$.

- If $\omega_{\mathbf{M}}(t) = o(t^2)$, as $t \rightarrow +\infty$, then $\mathcal{S}_{(\mathcal{M})}(\mathbb{R}^d)$ is nontrivial (all Hermite functions are contained in this class).
If $t^2 = O(\omega_{\mathbf{M}}(t))$ then $\mathcal{S}_{(\mathcal{M})}(\mathbb{R}^d) = \{0\}$.
- Analogously, in the Roumieu case $\omega_{\mathbf{M}}(t) = O(t^2)$ implies that $\mathcal{S}_{\{\mathcal{M}\}}(\mathbb{R}^d)$ is nontrivial but $t^2 = o(\omega_{\mathbf{M}}(t))$ implies $\mathcal{S}_{\{\mathcal{M}\}}(\mathbb{R}^d) = \{0\}$.

Characterization of inclusion relations

Theorem (Boiti-Jornet-Oliaro-Schindl)

Let $\mathcal{M} = \{(\mathbf{M}^{(\lambda)})_{\lambda > 0}\}$ and $\mathcal{N} = \{(\mathbf{N}^{(\lambda)})_{\lambda > 0}\}$ be two weight matrices and assume that \mathcal{M} is log-convex (i.e. $\{M_{\alpha}^{(\lambda)}\}_{\alpha}$ is log-convex for all λ). Then:

- Let \mathcal{M} satisfy (4)-(6) and \mathcal{N} satisfy (4)-(5). Then
 - (a) $\mathcal{S}_{\{\mathcal{M}\}}(\mathbb{R}^d) \subseteq \mathcal{S}_{\{\mathcal{N}\}}(\mathbb{R}^d)$ holds (with continuous inclusion);
 - \Leftrightarrow (b) $\mathcal{M} \{ \preceq \} \mathcal{N}$, i.e. $\forall \lambda > 0 \exists \kappa > 0, C \geq 1 : M_{\alpha}^{(\lambda)} \leq C^{|\alpha|} N_{\alpha}^{(\kappa)} \forall \alpha \in \mathbb{N}_0^d$.
- Let \mathcal{M} satisfy (7)-(9) and \mathcal{N} satisfy (7)-(8). Then
 - (a) $\mathcal{S}_{(\mathcal{M})}(\mathbb{R}^d) \subseteq \mathcal{S}_{(\mathcal{N})}(\mathbb{R}^d)$ holds (with continuous inclusion);
 - \Leftrightarrow (b) $\mathcal{M} (\preceq) \mathcal{N}$, i.e. $\forall \lambda > 0 \exists \kappa > 0, C \geq 1 : M_{\alpha}^{(\kappa)} \leq C^{|\alpha|} N_{\alpha}^{(\lambda)} \forall \alpha \in \mathbb{N}_0^d$.
- Let \mathcal{M} satisfy (4)-(6) and \mathcal{N} satisfy (7)-(8). Then
 - (a) $\mathcal{S}_{\{\mathcal{M}\}}(\mathbb{R}^d) \subseteq \mathcal{S}_{(\mathcal{N})}(\mathbb{R}^d)$ holds (with continuous inclusion);
 - \Leftrightarrow (b) $\mathcal{M} \triangleleft \mathcal{N}$, i.e. $\forall \lambda, \kappa > 0 \forall h > 0 \exists C \geq 1 : M_{\alpha}^{(\lambda)} \leq Ch^{|\alpha|} N_{\alpha}^{(\kappa)} \forall \alpha \in \mathbb{N}_0^d$.

Characterization of inclusion relations

Theorem (Boiti-Jornet-Oliaro-Schindl)

Let $\mathcal{M} = \{(\mathbf{M}^{(\lambda)})_{\lambda > 0}\}$ and $\mathcal{N} = \{(\mathbf{N}^{(\lambda)})_{\lambda > 0}\}$ be two weight matrices and assume that \mathcal{M} is log-convex (i.e. $\{M_{\alpha}^{(\lambda)}\}_{\alpha}$ is log-convex for all λ). Then:

- Let \mathcal{M} satisfy (4)-(6) and \mathcal{N} satisfy (4)-(5). Then
 - (a) $\mathcal{S}_{\{\mathcal{M}\}}(\mathbb{R}^d) \subseteq \mathcal{S}_{\{\mathcal{N}\}}(\mathbb{R}^d)$ holds (with continuous inclusion);
 - \Leftrightarrow (b) $\mathcal{M} \{ \preceq \} \mathcal{N}$, i.e. $\forall \lambda > 0 \exists \kappa > 0, C \geq 1 : M_{\alpha}^{(\lambda)} \leq C^{|\alpha|} N_{\alpha}^{(\kappa)} \forall \alpha \in \mathbb{N}_0^d$.
- Let \mathcal{M} satisfy (7)-(9) and \mathcal{N} satisfy (7)-(8). Then
 - (a) $\mathcal{S}_{(\mathcal{M})}(\mathbb{R}^d) \subseteq \mathcal{S}_{(\mathcal{N})}(\mathbb{R}^d)$ holds (with continuous inclusion);
 - \Leftrightarrow (b) $\mathcal{M} (\preceq) \mathcal{N}$, i.e. $\forall \lambda > 0 \exists \kappa > 0, C \geq 1 : M_{\alpha}^{(\kappa)} \leq C^{|\alpha|} N_{\alpha}^{(\lambda)} \forall \alpha \in \mathbb{N}_0^d$.
- Let \mathcal{M} satisfy (4)-(6) and \mathcal{N} satisfy (7)-(8). Then
 - (a) $\mathcal{S}_{\{\mathcal{M}\}}(\mathbb{R}^d) \subseteq \mathcal{S}_{(\mathcal{N})}(\mathbb{R}^d)$ holds (with continuous inclusion);
 - \Leftrightarrow (b) $\mathcal{M} \triangleleft \mathcal{N}$, i.e. $\forall \lambda, \kappa > 0 \forall h > 0 \exists C \geq 1 : M_{\alpha}^{(\lambda)} \leq Ch^{|\alpha|} N_{\alpha}^{(\kappa)} \forall \alpha \in \mathbb{N}_0^d$.

Characterization of inclusion relations

Theorem (Boiti-Jornet-Oliaro-Schindl)

Let $\mathcal{M} = \{(\mathbf{M}^{(\lambda)})_{\lambda > 0}\}$ and $\mathcal{N} = \{(\mathbf{N}^{(\lambda)})_{\lambda > 0}\}$ be two weight matrices and assume that \mathcal{M} is log-convex (i.e. $\{M_{\alpha}^{(\lambda)}\}_{\alpha}$ is log-convex for all λ). Then:

- Let \mathcal{M} satisfy (4)-(6) and \mathcal{N} satisfy (4)-(5). Then
 - (a) $\mathcal{S}_{\{\mathcal{M}\}}(\mathbb{R}^d) \subseteq \mathcal{S}_{\{\mathcal{N}\}}(\mathbb{R}^d)$ holds (with continuous inclusion);
 - \Leftrightarrow (b) $\mathcal{M} \{ \preceq \} \mathcal{N}$, i.e. $\forall \lambda > 0 \exists \kappa > 0, C \geq 1 : M_{\alpha}^{(\lambda)} \leq C^{|\alpha|} N_{\alpha}^{(\kappa)} \forall \alpha \in \mathbb{N}_0^d$.
- Let \mathcal{M} satisfy (7)-(9) and \mathcal{N} satisfy (7)-(8). Then
 - (a) $\mathcal{S}_{(\mathcal{M})}(\mathbb{R}^d) \subseteq \mathcal{S}_{(\mathcal{N})}(\mathbb{R}^d)$ holds (with continuous inclusion);
 - \Leftrightarrow (b) $\mathcal{M} (\preceq) \mathcal{N}$, i.e. $\forall \lambda > 0 \exists \kappa > 0, C \geq 1 : M_{\alpha}^{(\kappa)} \leq C^{|\alpha|} N_{\alpha}^{(\lambda)} \forall \alpha \in \mathbb{N}_0^d$.
- Let \mathcal{M} satisfy (4)-(6) and \mathcal{N} satisfy (7)-(8). Then
 - (a) $\mathcal{S}_{\{\mathcal{M}\}}(\mathbb{R}^d) \subseteq \mathcal{S}_{(\mathcal{N})}(\mathbb{R}^d)$ holds (with continuous inclusion);
 - \Leftrightarrow (b) $\mathcal{M} \triangleleft \mathcal{N}$, i.e. $\forall \lambda, \kappa > 0 \forall h > 0 \exists C \geq 1 : M_{\alpha}^{(\lambda)} \leq Ch^{|\alpha|} N_{\alpha}^{(\kappa)} \forall \alpha \in \mathbb{N}_0^d$.

Application of $M_\alpha^{\text{lc}} = \sup \frac{s^\alpha}{\exp \omega_{\mathbf{M}}(s)}$ in the proof

Assuming that the inclusion $\mathcal{S}_{(\mathcal{M})}(\mathbb{R}^d) \subseteq \mathcal{S}_{(\mathcal{N})}(\mathbb{R}^d)$ is continuous we first proved that for all $\ell \in \mathbb{N}$ there exist $j \in \mathbb{N}$ and $C \geq 1$ such that

$$\omega_{\mathbf{N}^{(1/\ell)}}(\ell s) \leq \log C + \omega_{\mathbf{M}^{(1/j)}}(2js), \quad \forall s \in (0, +\infty)^d.$$

Then

$$\begin{aligned} N_\alpha^{(1/\ell)} &\geq (N_\alpha^{(1/\ell)})^{\text{lc}} = \sup_{t \in (0, +\infty)^d} \frac{t^\alpha}{\exp \omega_{\mathbf{N}^{(1/\ell)}}(t)} \\ &= \sup_{s \in (0, +\infty)^d} \frac{(\ell s)^\alpha}{\exp \omega_{\mathbf{N}^{(1/\ell)}}(\ell s)} \geq \frac{\ell^{|\alpha|}}{C} \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_{\mathbf{M}^{(1/j)}}(2js)} \\ &= \frac{\ell^{|\alpha|}}{C} \sup_{t \in (0, +\infty)^d} \frac{\left(\frac{t}{2j}\right)^\alpha}{\exp \omega_{\mathbf{M}^{(1/j)}}(t)} = \frac{1}{C} \left(\frac{\ell}{2j}\right)^{|\alpha|} M_\alpha^{(1/j)} \end{aligned}$$

i.e. $\mathcal{M}(\preceq) \mathcal{N}$

□

Application of $M_\alpha^{\text{lc}} = \sup \frac{s^\alpha}{\exp \omega_{\mathbf{M}}(s)}$ in the proof

Assuming that the inclusion $\mathcal{S}_{(\mathcal{M})}(\mathbb{R}^d) \subseteq \mathcal{S}_{(\mathcal{N})}(\mathbb{R}^d)$ is continuous we first proved that for all $\ell \in \mathbb{N}$ there exist $j \in \mathbb{N}$ and $C \geq 1$ such that

$$\omega_{\mathbf{N}^{(1/\ell)}}(\ell s) \leq \log C + \omega_{\mathbf{M}^{(1/j)}}(2js), \quad \forall s \in (0, +\infty)^d.$$

Then

$$\begin{aligned} N_\alpha^{(1/\ell)} &\geq (N_\alpha^{(1/\ell)})^{\text{lc}} = \sup_{t \in (0, +\infty)^d} \frac{t^\alpha}{\exp \omega_{\mathbf{N}^{(1/\ell)}}(t)} \\ &= \sup_{s \in (0, +\infty)^d} \frac{(\ell s)^\alpha}{\exp \omega_{\mathbf{N}^{(1/\ell)}}(\ell s)} \geq \frac{\ell^{|\alpha|}}{C} \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_{\mathbf{M}^{(1/j)}}(2js)} \\ &= \frac{\ell^{|\alpha|}}{C} \sup_{t \in (0, +\infty)^d} \frac{\left(\frac{t}{2j}\right)^\alpha}{\exp \omega_{\mathbf{M}^{(1/j)}}(t)} = \frac{1}{C} \left(\frac{\ell}{2j}\right)^{|\alpha|} M_\alpha^{(1/j)} \end{aligned}$$

i.e. $\mathcal{M}(\preceq) \mathcal{N}$

□

Application of $M_\alpha^{\text{lc}} = \sup \frac{s^\alpha}{\exp \omega_{\mathbf{M}}(s)}$ in the proof

Assuming that the inclusion $\mathcal{S}_{(\mathcal{M})}(\mathbb{R}^d) \subseteq \mathcal{S}_{(\mathcal{N})}(\mathbb{R}^d)$ is continuous we first proved that for all $\ell \in \mathbb{N}$ there exist $j \in \mathbb{N}$ and $C \geq 1$ such that

$$\omega_{\mathbf{N}^{(1/\ell)}}(\ell s) \leq \log C + \omega_{\mathbf{M}^{(1/j)}}(2js), \quad \forall s \in (0, +\infty)^d.$$

Then

$$\begin{aligned} N_\alpha^{(1/\ell)} &\geq (N_\alpha^{(1/\ell)})^{\text{lc}} = \sup_{t \in (0, +\infty)^d} \frac{t^\alpha}{\exp \omega_{\mathbf{N}^{(1/\ell)}}(t)} \\ &= \sup_{s \in (0, +\infty)^d} \frac{(\ell s)^\alpha}{\exp \omega_{\mathbf{N}^{(1/\ell)}}(\ell s)} \geq \frac{\ell^{|\alpha|}}{C} \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_{\mathbf{M}^{(1/j)}}(2js)} \\ &= \frac{\ell^{|\alpha|}}{C} \sup_{t \in (0, +\infty)^d} \frac{\left(\frac{t}{2j}\right)^\alpha}{\exp \omega_{\mathbf{M}^{(1/j)}}(t)} = \frac{1}{C} \left(\frac{\ell}{2j}\right)^{|\alpha|} M_\alpha^{(1/j)} \end{aligned}$$

i.e. $\mathcal{M}(\preceq) \mathcal{N}$

□

Application of $M_\alpha^{\text{lc}} = \sup \frac{s^\alpha}{\exp \omega_{\mathbf{M}}(s)}$ in the proof

Assuming that the inclusion $\mathcal{S}_{(\mathcal{M})}(\mathbb{R}^d) \subseteq \mathcal{S}_{(\mathcal{N})}(\mathbb{R}^d)$ is continuous we first proved that for all $\ell \in \mathbb{N}$ there exist $j \in \mathbb{N}$ and $C \geq 1$ such that

$$\omega_{\mathbf{N}^{(1/\ell)}}(\ell s) \leq \log C + \omega_{\mathbf{M}^{(1/j)}}(2js), \quad \forall s \in (0, +\infty)^d.$$

Then

$$\begin{aligned} N_\alpha^{(1/\ell)} &\geq (N_\alpha^{(1/\ell)})^{\text{lc}} = \sup_{t \in (0, +\infty)^d} \frac{t^\alpha}{\exp \omega_{\mathbf{N}^{(1/\ell)}}(t)} \\ &= \sup_{s \in (0, +\infty)^d} \frac{(\ell s)^\alpha}{\exp \omega_{\mathbf{N}^{(1/\ell)}}(\ell s)} \geq \frac{\ell^{|\alpha|}}{C} \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_{\mathbf{M}^{(1/j)}}(2js)} \\ &= \frac{\ell^{|\alpha|}}{C} \sup_{t \in (0, +\infty)^d} \frac{\left(\frac{t}{2j}\right)^\alpha}{\exp \omega_{\mathbf{M}^{(1/j)}}(t)} = \frac{1}{C} \left(\frac{\ell}{2j}\right)^{|\alpha|} M_\alpha^{(1/j)} \end{aligned}$$

i.e. $\mathcal{M}(\preceq) \mathcal{N}$

□

Application of $M_\alpha^{\text{lc}} = \sup \frac{s^\alpha}{\exp \omega_{\mathbf{M}}(s)}$ in the proof

Assuming that the inclusion $\mathcal{S}_{(\mathcal{M})}(\mathbb{R}^d) \subseteq \mathcal{S}_{(\mathcal{N})}(\mathbb{R}^d)$ is continuous we first proved that for all $\ell \in \mathbb{N}$ there exist $j \in \mathbb{N}$ and $C \geq 1$ such that

$$\omega_{\mathbf{N}^{(1/\ell)}}(\ell s) \leq \log C + \omega_{\mathbf{M}^{(1/j)}}(2js), \quad \forall s \in (0, +\infty)^d.$$

Then

$$\begin{aligned} N_\alpha^{(1/\ell)} &\geq (N_\alpha^{(1/\ell)})^{\text{lc}} = \sup_{t \in (0, +\infty)^d} \frac{t^\alpha}{\exp \omega_{\mathbf{N}^{(1/\ell)}}(t)} \\ &= \sup_{s \in (0, +\infty)^d} \frac{(\ell s)^\alpha}{\exp \omega_{\mathbf{N}^{(1/\ell)}}(\ell s)} \geq \frac{\ell^{|\alpha|}}{C} \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_{\mathbf{M}^{(1/j)}}(2js)} \\ &= \frac{\ell^{|\alpha|}}{C} \sup_{t \in (0, +\infty)^d} \frac{\left(\frac{t}{2j}\right)^\alpha}{\exp \omega_{\mathbf{M}^{(1/j)}}(t)} = \frac{1}{C} \left(\frac{\ell}{2j}\right)^{|\alpha|} M_\alpha^{(1/j)} \end{aligned}$$

i.e. $\mathcal{M}(\preceq) \mathcal{N}$

□

Application of $M_\alpha^{\text{lc}} = \sup \frac{s^\alpha}{\exp \omega_{\mathbf{M}}(s)}$ in the proof

Assuming that the inclusion $\mathcal{S}_{(\mathcal{M})}(\mathbb{R}^d) \subseteq \mathcal{S}_{(\mathcal{N})}(\mathbb{R}^d)$ is continuous we first proved that for all $\ell \in \mathbb{N}$ there exist $j \in \mathbb{N}$ and $C \geq 1$ such that

$$\omega_{\mathbf{N}^{(1/\ell)}}(\ell s) \leq \log C + \omega_{\mathbf{M}^{(1/j)}}(2js), \quad \forall s \in (0, +\infty)^d.$$

Then

$$\begin{aligned} N_\alpha^{(1/\ell)} &\geq (N_\alpha^{(1/\ell)})^{\text{lc}} = \sup_{t \in (0, +\infty)^d} \frac{t^\alpha}{\exp \omega_{\mathbf{N}^{(1/\ell)}}(t)} \\ &= \sup_{s \in (0, +\infty)^d} \frac{(\ell s)^\alpha}{\exp \omega_{\mathbf{N}^{(1/\ell)}}(\ell s)} \geq \frac{\ell^{|\alpha|}}{C} \sup_{s \in (0, +\infty)^d} \frac{s^\alpha}{\exp \omega_{\mathbf{M}^{(1/j)}}(2js)} \\ &= \frac{\ell^{|\alpha|}}{C} \sup_{t \in (0, +\infty)^d} \frac{\left(\frac{t}{2j}\right)^\alpha}{\exp \omega_{\mathbf{M}^{(1/j)}}(t)} = \frac{1}{C} \left(\frac{\ell}{2j}\right)^{|\alpha|} M_\alpha^{(1/j)} \end{aligned}$$

i.e. $\mathcal{M}(\preceq) \mathcal{N}$

□

Main references

- C. Boiti, D. Jornet, A. Oliaro, G. Schindl, *On the inclusion relations of global ultradifferentiable classes defined by weight matrices*, *Mediterr. J. Math.* **21** art. n. 153 (2024)
- C. Boiti, D. Jornet, A. Oliaro, G. Schindl, *Construction of the log-convex minorant of a sequence $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$* , *Math. Nachr.* **298** (2025), 456-477.
- A. Debrouwere, L. Neyt, J. Vindas, *On the inclusion relations between Gelfand-Shilov spaces*, arXiv:2407.06126 (application of $M_\alpha^{\text{lc}} = \sup \frac{s^\alpha}{\exp \omega_M(s)}$)
- H. Komatsu, *Ultradistributions I. Structure theorems and a characterization*, *J. Fac. Sci. Univ. Tokyo Sect IA Math.* **20** (1973), 25-105
- M. Langenbruch, *Hermite functions and weighted spaces of generalized functions*, *Manuscripta Math.* **119**, n. 3 (2006), 269-285
- S. Mandelbrojt, *Séries adhérentes, Régularisation des suites, Applications*, Gauthier-Villars, Paris, 1952

Thank you for your attention!

Main references

- C. Boiti, D. Jornet, A. Oliaro, G. Schindl, *On the inclusion relations of global ultradifferentiable classes defined by weight matrices*, *Mediterr. J. Math.* **21** art. n. 153 (2024)
- C. Boiti, D. Jornet, A. Oliaro, G. Schindl, *Construction of the log-convex minorant of a sequence $\{M_\alpha\}_{\alpha \in \mathbb{N}_0^d}$* , *Math. Nachr.* **298** (2025), 456-477.
- A. Debrouwere, L. Neyt, J. Vindas, *On the inclusion relations between Gelfand-Shilov spaces*, arXiv:2407.06126 (application of $M_\alpha^{\text{lc}} = \sup \frac{s^\alpha}{\exp \omega_M(s)}$)
- H. Komatsu, *Ultradistributions I. Structure theorems and a characterization*, *J. Fac. Sci. Univ. Tokyo Sect IA Math.* **20** (1973), 25-105
- M. Langenbruch, *Hermite functions and weighted spaces of generalized functions*, *Manuscripta Math.* **119**, n. 3 (2006), 269-285
- S. Mandelbrojt, *Séries adhérentes, Régularisation des suites, Applications*, Gauthier-Villars, Paris, 1952

Thank you for your attention!

Happy Birthday Pepe!!!

