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Maŕıa J. Carro

Universidad Complutense de Madrid

Workshop on Functional Analysis on the Occasion of the
70th Birthday of José Bonet
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Abstract

General situation

T : Lp −→ Lp, ∀p ∈ (p0,p1)

Question

What can we say at the endpoints p0 and p1?

This is a joint work with Teresa Luque. and Laura Sánchez-
Pascuala.
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Many answers

Depending on the information

a) Strong type
T : Lp0 −→ Lp0

b) Weak type
T : Lp0 −→ Lp0,∞

c) Restricted weak type

T : Lp0,1 −→ Lp0,∞

d) There exists X ⊂ Lp0

T : X −→ Lp0

e) It is an open question.
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Function spaces

Weighted Lebesgue spaces

Lp(v) =

{
f : ‖f‖Lp(v) =

(∫
|f (x)|pv(x)dx

)1/p

<∞

}

Lorentz spaces

Lp,q(v) =

{
f : ‖f‖Lp,q =

(∫ ∞
0

f ∗v (t)qtq/p−1dt
)1/q

<∞

}

Logarithmic spaces

L(log L)m =

{
f : ‖f‖L(log L)m =

∫ ∞
0

f ∗v (t)
(

1 + log+
1
t

)m

dt <∞
}
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Rubio de Francia operators

The Hardy-Littlewood maximal operator

Mf (x) = sup
x∈Q

1
|Q|

∫
Q
|f (y)|dy .

Theorem (Muckehoupt 1972)

M : Lp(v) −→ Lp(v) ⇐⇒ v ∈ Ap.

M : L1(v) −→ L1,∞(v) ⇐⇒ v ∈ A1.

B. Muckenhoupt, Trans. Amer. Math. Soc. (1972).
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Rubio de Francia operators

Definition

An operator T is said to be a Rubio de Francia operator if, for
every v ∈ Ap,

T : Lp(v) −→ Lp(v)

is bounded.

Examples
1 M , the Hardy-Littlewood maximal operator.
2 H , the Hilbert transform.
3 Rj the Riesz transform.
4 Any Calderón-Zygmund operator.
5 etc.
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Rubio de Francia’s Extrapolation Theorem

Theorem

Let T be an operator such that, for some p0 ≥ 1 and every
v ∈ Ap0 ,

T : Lp0(v) −→ Lp0(v)

is bounded. Then, for every p > 1 and every v ∈ Ap,

T : Lp(v) −→ Lp(v)

is bounded.

J. L. Rubio de Francia, Amer. J. Math. 106 (1984).
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Rubio de Francia’s Extrapolation Theorem

Fundamental remark

T : Lp0(v) −→ Lp0(v), ∀ v ∈ Ap0 .

6=⇒
T : L1(v) −→ L1,∞(v), ∀ v ∈ A1.

Example: M ◦ M .

Maŕıa J. Carro Endpoint estimates for Rubio de Francia operators



Rubio de Francia’s Extrapolation Theorem

Fundamental remark

T : Lp0(v) −→ Lp0(v), ∀ v ∈ Ap0 .

6=⇒
T : L1(v) −→ L1,∞(v), ∀ v ∈ A1.

Example: M ◦ M .
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Quantitative version of Rubio de Francia’s
Extrapolation Theorem

Theorem
Assume that, for some 1 ≤ p0 <∞, and for all v ∈ Ap0(∫

Rn
|Tf |p0v

)1/p0

≤ N(‖v‖Ap0
)

(∫
Rn

f p0v
)1/p0

.

Then, for all 1 < p <∞ and all v ∈ Ap,(∫
Rn
|Tf |pv

)1/p

≤ K (v)

(∫
Rn

f pv
)1/p

,

where:
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Quantitative of Rubio de Francia’s Extrapolation
Theorem

Sharp estimate

K (v) . N
(‖v‖max

(
1, p0−1

p−1

)
Ap

p − 1

)
.

O. Dragǐcevíc, L. Grafakos, M. C. Pereyra and S. Petermichl, Publ. Mat. 49
(2005).

Duoandikoetxea, J. Funct. Anal. 260 (2011).
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Endpoint estimates near L1

Theorem
If

T : Lp0(v) −→ Lp0(v), ‖v‖sAp0
,

then, for every 1 < p < p0,

T : Lp(v) −→ Lp(v), ∀ v ∈ A1,

with
||T || . 1

(p − 1)s(p0−1) , as p → 1+.
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Endpoint estimates near L1

Yano’s extrapolation Theorem, 1951

If ν is a finite measure and T is a sublinear operator T such
that

T : Lp(µ) −→ Lp(ν), (p − 1)−m,m > 0,

then
T : L(log L)m(µ) −→ L1(ν).
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Endpoint estimates near L1

Optimality of Yano’s extrapolation Theorem

M : Lp((0,1)) −→ Lp((0,1)),
1

p − 1
,

and hence
M : L log L((0,1)) −→ L1((0,1)),

but, in fact,

Mf ∈ L1((0,1)) ⇐⇒ f ∈ L(log L)((0,1)).
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Endpoint estimates near L1

Corollary

Let 1 < p0 <∞, s > 0 and let T be a sublinear operator such
that

T : Lp0(v) −→ Lp0(v), ‖v‖sAp0
.

Then,
T : L(log L)s(p0−1) −→ L1

loc

is also bounded.
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Endpoint estimates near L1

Theorem

Let 1 < p0 <∞, s > 0 and let T be a sublinear operator such
that

T : Lp0(v) −→ Lp0(v), ‖v‖sAp0
.

Then,
T : L(log L)s(p0−1)(u) −→ L1

loc(u)

is also bounded, for every u ∈ A1.
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Endpoint estimates near L1

Theorem

If a sublinear operator T satisfies that

T : Lp,1(µ) −→ Lp(ν), (p − 1)−m,m > 0,

then
T : L(log L)m(µ) −→ Λ1

ν(w) ⊂ L1
loc(ν)

Remark on Lorentz spaces

Lp,1 ⊂ Lp ⊂ Lp,∞

MJC, J. Funct. Anal. 174 (2000).
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The convergence of Fourier series for functions in
L1(0,1)

Main motivation: Convergence of the Fourier series

In 1967 Hunt proved that

‖S∗χE‖Lp,∞(0,1) .
1

p − 1
|E |1/p,

where

S∗f (x) = sup
N

SN f (x), SN f (x) =
∑
|k |≤N

f̂ (k)e2πinx

Then

S∗ : Lp,1(0,1) −→ L1(0,1), ‖S∗‖ . 1
(p − 1)2 ,
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The convergence of Fourier series for functions in
L1(0,1)

Main motivation: Convergence of the Fourier series

S∗ : L(log L)2(0,1) −→ L1(0,1).

In 1996, Antonov used Hunt’s estimate to obtain the
convergence for functions in L log L log log log L(0,1) where

L(log L)2(0,1) ⊂ L log L log log log L(0,1) ⊂ L log L(0,1).
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Extensions of Yano’s theorem

Different endpoints

T : Lp −→ Lp ‖T‖ . pα, ∀p <∞,

T : Lp −→ Lp ‖T‖ . 1
(p1 − p)α

, ∀p < p1 <∞,

T : Lp −→ Lp ‖T‖ . 1
(p − p0)α

, ∀p > p0 > 1.

Different norm behaviour

T : Lp −→ Lp ‖T‖ . log

(
1

p − 1

)
.

Different types of spaces in the hypotheses.
An abstract theory (M. Milman and B. Jawerth).
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Rubio de Francia operator

Let T be a RF operator such that

T : Lp0(v) −→ Lp0(v), ‖v‖sAp0
.

Then

T : Lp0(v) −→ Lp0,∞(v), ‖v‖σAp0

T : Lp0,1(v) −→ Lp0,∞(v), ‖v‖rAp0

with
r ≤ σ ≤ s,
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Rubio de Francia operator

Examples

‖M‖L2(v)→L2(v) . ‖v‖A2 , ‖M‖L2(v)→L2,∞(v) . ‖v‖
1/2
A2
,

‖M‖L2,1(v)→L2,∞(v) . ‖v‖
1/2
A2
,
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Endpoint estimates near L1

Theorem (Yano’s type result)

If a sublinear operator T satisfies that

T : Lp,1(µ) −→ Lp,∞(ν), (p − 1)−m,m > 0,

then
T : L(log L)m(log3 L)(µ) −→ L1

loc(ν),

where log3 = log log log.

MJC and J. Mart́ın, Rev. Mat. Iberoamericana 20 (2004).
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Summarize:

M.C. and C. Domingo-Salazar, TAMS, 2016
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How can we prove that Yano’s type results?

The ODR technique

1 O: Optimization

2 D: Decomposition

3 R: Reconstruction
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Optimization of Hypotheses.

To obtain an endpoint estimate for a subset O of L1(µ)

O =
{

f ∈ L1(µ) ∩ L∞(µ) : ‖f‖L∞(µ) ≤ 1
}
.

‖Tf‖L1(ν) . ‖Tf‖Lp(ν) .
‖f‖Lp(µ)

(p − 1)α
.
‖f‖1/p

L1(µ)

(p − 1)α
.

Hence, taking the infimum over 1 < p ≤ 2 on the right hand
side, we obtain

‖Tf‖L1(ν) . ‖f‖L1(µ)

(
log1

1
‖f‖L1(µ)

)α
, ∀f ∈ O.
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Decomposition.

To find a decomposition of a function f ∈ L1(µ) as a linear
combination of functions in O
1) Dyadic decomposition:

f =
∑
i∈Z

2i fi where fi =
fχ{2i−1≤|f |<2i}

2i .

2) k -dyadic decomposition:

f =
∑
n≥0

dnfn, dn = 22...2
n︸ ︷︷ ︸

k -times

and fn =
fχ{dn−1≤|f |<dn}

dn

with d−1 = 0. If k = 2, we call super-dyadic decomposition.
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Reconstruction.

To gather the obtained information.

‖Tf‖L1(ν) .
∑
i∈Z

2i ‖Tfi‖L1(ν) .
∑
i∈Z

2i ‖fi‖L1(µ)

(
log1

1
‖fi‖L1(µ)

)α

.
∫ ∞

0
λµf (s)

(
log1

1
λµf (s)

)α
ds . ‖f‖L(log L)α(µ) ,

What if the final space is not Banach?.

‖Tf‖L1,∞(ν) .
∑
i∈Z

2i log i ‖Tfi‖L1,∞(ν) . · · · . ‖f‖L(log L)α(log log L)(µ) .
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Reconstruction.

Can we improve the previous estimate?.
The idea (original inspired by the work of Antonov) was to
consider the super-dyadic decomposition

‖Tf‖L1,∞(ν) .
∑
i∈Z

22i
log i ‖Tfi‖L1,∞(ν)

. · · · . ‖f‖L(log L)α(log log log L)(µ) .
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Multilinear operators (Bilinear)

Definition
An operator

B : X × Y −→ Z

is said to be bilinear if it is linear in each variable. And, we
say it is bounded if

||B(x , y)||Z . ||x ||X ||y ||Y

Examples
Bilinear Hilbert trasform

B(f ,g)(x) = p.v .
∫
R

f (x − t)g(x + t)
t

dt .
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Bilinear Yano’s extrapolation

Goal L. Sánchez-Pascuala, PhD Thesis (Advisors: MJC and T.
Luque). May 6, 2025

Let B be a bilinear operator such that,

B : Lp1,r1 × Lp2,r2 −→ Lp,s,

with
‖B‖ . ϕ1

(
1

|p1 − q1|

)
ϕ2

(
1

|p2 − q2|

)
,

where r1 ∈ {1,p1,∞}, r2 ∈ {1,p2,∞}, s ∈ {p,∞}.

M. C., T. Luque and L. Sánchez-Pascuala, Linear and Bilinear Yano’s extrap-
olation for Lorentz spaces. In preparation.
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Bilinear Yano’s extrapolation

1
p1

1
p2

quasi-Banach setting

p < 1

Banach setting

p > 1

(1,1; 1
2)

(∞,∞;∞)

B : Lp1 × Lp2 −→ Lp,

where (p1,p2; p) satisfies

1
p

=
1
p1

+
1
p2
.
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Bilinear Yano’s extrapolation

1
p2

1
p1

1
p2

1
p1
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Bilinear Yano’s extrapolation

B : Lp1 × Lp2 −→ Lp,

‖B‖ . 1
(p1 − 1)α1(p2 − 1)α2

,

1
p2

1
p1

‖B‖ . 1(
p − 1

2

)α .
1
p2

1
p1
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Bilinear Yano’s extrapolation

Theorem
Let B be a bilinear operator such that, f

B : Lp1,1 × Lp2,1 −→ Lp,∞, ‖B‖ . 1
(p1 − 1)α1(p2 − 1)α2

,

then, for every ε > 0,

B : L(log L)α1(log log L)1+ε × L(log L)α2(log log L)1+ε −→ L1/2,∞
loc ,
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The bilinear Bochner-Riesz

Definition
The bilinear Bochner-Riesz operator with index α ≥ 0

Bα (f ,g) (x) :=

∫
Rn

∫
Rn

(1− |ξ|2 − |η|2)α+ f̂ (ξ)ĝ(η)e2πix ·(ξ+η)dξdη.

For α > n − 1
2 , Bα is bounded for every 1 ≤ p1,p2 ≤ ∞,

α = n − 1
2 is the critical index.
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The bilinear Bochner-Riesz operator

Easy case
If α > n − 1

2 , then

Bα(f ,g) . Mf (x)Mg(x).

In this case:
For which (p1,p2; p), it holds that

Bα : Lp1(Rn)× Lp2(Rn) −→ Lp(Rn),

where 1
p = 1

p1
+ 1

p2
and p1 > 1 or p2 > 1. And,

Bα : L1(Rn)× L1(Rn) −→ L1/2,∞(Rn),
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Weighted estimates for Bn− 1
2

Theorem
For every v1, v2 ∈ A2,

Bn− 1
2 : L2(v1)× L2(v2) −→ L1(v),

with ∥∥∥Bn− 1
2

∥∥∥ . [v1]3A2
[v2]3A2

.

K. Jotsaroop, S. Shrivastava, and K. Shuin. Weighted estimates for bilinear
Bochner-Riesz means at the critical index. Potential Anal., (2021).
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Bilinear Rubio de Francia

Theorem (L. Grafakos and J. Martell, (2004) )
If, for some (r1, r2; r) and, for every vj ∈ Arj ,

B : Lr1(v1)× Lr2(v2) −→ Lr (v), ‖B‖ . ψ
(

[v1]Ar1
, [v2]Ar2

)
,

where ψ is an increasing function, then, for (p1,p2; p) with
1 < p1,p2 <∞ and, for vj ∈ Apj ,

B : Lp1(v1)× Lp2(v2) −→ Lp(v),

with the following operator norm: If 1 < p1 < r1, 1 < p2 < r2
and v1, v2 ∈ A1,

‖B‖ . ψ

(( 1
p1 − 1

)r1−p1
[v1]1+r1−p1

A1
,
( 1

p2 − 1

)r2−p2
[v2]1+r2−p2

A1

)
.
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Bilinear Rubio de Francia Theorem
1
p2

1
p1

(r1, r2; r)

(1,1; 1
2)

(∞,∞;∞)

1
p2

1
p1

(r1, r2; r)

(1,1; 1
2)

(∞,∞;∞)
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Bilinear Rubio de Francia Theorem
1
p2

1
p1

(r1, r2; r)

(1,1; 1
2)

(∞,∞;∞)

1
p2

1
p1

(r1, r2; r)

(1,1; 1
2)

(∞,∞;∞)
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The bilinear Bochner-Riesz operator at the critical
index

1
p2

1
p1
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Weighted estimates for Bn− 1
2

Corollary
For every 1 < p1 ≤ 2 and 1 < p2 ≤ 2,

B : Lp1 × Lp2 −→ Lp,

with ∥∥∥Bn− 1
2

∥∥∥ .

(
1

p1 − 1

)3( 1
p2 − 1

)3

.
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The bilinear Bochner-Riesz operator of index
α = n − 1

2

Theorem: the one weight case (1,1; 1/2)

For every ε > 0, v ∈ A1, and

D(v) := L(log L)3(log2 L)(1+ε)(v),

we have that

Bn− 1
2 : D(v)× D(v) −→ R ⊂ L1/2,∞

loc (v),

where
||f ||R = sup

t>0

t2f ∗v (t)
(log1 t)6 .
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The bilinear Bochner-Riesz operator of index
α = n − 1

2

Theorem: the two weight case (1,1; 1/2)

For every ε > 0, v1, v2 ∈ A1, v = v1/2
1 v1/2

2 , and

D(vj) := L(log L)6(log2 L)(1+ε)(vj),

we have that

Bn− 1
2 : D(v1)× D(v2) −→ R ⊂ L1/2,∞

loc (v),

where
||f ||R = sup

t>0

t2f ∗v (t)
(log1 t)6 .
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The end

Thanks for your attention!
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