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Abstract

General situation

T:LP—LP, Vpe(po,p1)
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Abstract

T:LP—LP, Vpe(po,p1)

v
Question

What can we say at the endpoints pg and p;?

v

This is a joint work with Teresa Luque. and Laura Sanchez-
Pascuala.
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Many answers

Depending on the information

a) Strong type

T:LPo — [P
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Many answers

Depending on the information

a) Strong type

T:LPo — [P

b) Weak type
T : P — [PO:o®

) Restricted weak type
T:LPo! s [P0
d) There exists X c Lo
T:X— LPo

e) Itis an open question.

v
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Function spaces
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Function spaces

Weighted Lebesgue spaces

1/p
LP(v) = {f: ||f||Lp(v) = </ \f(x)|pv(x)dx> < oo}
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Function spaces
Weighted Lebesgue spaces

1/p
LP(v) = {f: ||f||Lp(v) = </ |f(x)|pv(x)dx> < oo}

v
Lorentz spaces

o0 1/q
LPA(v) = {f: [f]|Lp.a = </0 f(f(t)qtq/p1dt> < oo}
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Function spaces
Weighted Lebesgue spaces

1/p
LP(v) = {f: ||f||Lp(v) = </ |f(x)|pv(x)dx> < oo}

o0 1/q
123(v) = 3 : e = ([~ 9P t) < o0
0

4
Logarithmic spaces

o0 1 m
L(log L) = {f: 11l L(10g ym = /0 f (1) (1 + log l‘) dt < oo}
4




Rubio de Francia operators
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Rubio de Francia operators

The Hardy-Littlewood maximal operator

Mf(x) sup|Q‘/]f )| dy.

xeQ

Maria J. Carro Endpoint estimates for Rubio de Francia operators



Rubio de Francia operators

The Hardy-Littlewood maximal operator

Mf(x) sup|Q‘/]f )| dy.

xeQ

Theorem (Muckehoupt 1972)

M:LP(v) — LP(v) <— veA,.

M:L'(v) — L"®(v) «— veA.

.

B. Muckenhoupt, Trans. Amer. Math. Soc. (1972).
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Rubio de Francia operators

Maria J. Carro Endpoint estimates for Rubio de Francia operators



Rubio de Francia operators

An operator T is said to be a Rubio de Francia operator if, for
every v € Ap,

T:LP(v) — LP(v)

is bounded.
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Rubio de Francia operators

An operator T is said to be a Rubio de Francia operator if, for
every v € Ap,

T:LP(v) — LP(v)

is bounded.

v
EIIES

@ M, the Hardy-Littlewood maximal operator.
Q H, the Hilbert transform.

© R the Riesz transform.

© Any Calderéon-Zygmund operator.

Q etc

v
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Rubio de Francia's Extrapolation Theorem

Let T be an operator such that, for some py > 1 and every
v € Apy

T:LP(v) — LPo(v)
is bounded. Then, for every p > 1 and every v € A,
T:LP(v) — LP(v)

is bounded.

J. L. Rubio de Francia, Amer. J. Math. 106 (1984).
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Rubio de Francia's Extrapolation Theorem
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T:LP(v) — LPo(v)
is bounded. Then, for every p > 1 and every v € A,
T:LP(v) — LP(v)

is bounded.

J. L. Rubio de Francia, Amer. J. Math. 106 (1984).
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Rubio de Francia's Extrapolation Theorem

Fundamental remark

T : LP(v) — LPo(v), Vv e Ap.

¥

T:L'(v)— LY®°(v), VveA.

.
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Rubio de Francia's Extrapolation Theorem

Fundamental remark

T : LP(v) — LPo(v), Vv e Ap.

¥

T:L'(v)— LY®°(v), VveA.

.

Example: Mo M.
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Quantitative version of Rubio de Francia’s
Extrapolation Theorem

Assume that, for some 1 < pp < oo, and for all v € Ay,

1/po 1/po
( |Tf\P°v) < N(|[Vlla, )( / fPOv) .
RP g RN

Then, forall1 < p<occandallv e A,

(L) "< 7"

where:
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Quantitative of Rubio de Francia's Extrapolation
Theorem

Sharp estimate

max (1,’;9%11)
Vil
KW SN(—2——)

O. Dragicevic, L. Grafakos, M. C. Pereyra and S. Petermichl, Publ. Mat. 49
(2005).

Duoandikoetxea, J. Funct. Anal. 260 (2011).
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Endpoint estimates near L'

Theorem
If

T:LP(v) — (), |VIa,
then, for every 1 < p < po,

T:LP(v) — LP(v), Vv e A,
with

1 +
||TH§W= asp—1".
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Endpoint estimates near L'

Yano's extrapolation Theorem, 1951

If v is a finite measure and T is a sublinear operator T such
that
T: Lp(#) — Lp(y)’ (p - 1)_m7 m > O,

then
T : L(log L)™(p) — L' (v).

.
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Endpoint estimates near L'

Optimality of Yano's extrapolation Theorem

M : LP((0,1)) — LP((0,1)), -1

and hence
M : Llog L((0,1)) — L'((0, 1)),
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Endpoint estimates near L'

Optimality of Yano's extrapolation Theorem

M : LP((0,1)) — LP((0,1)), -1

and hence
M : Llog L((0,1)) — L'((0, 1)),

but, in fact,

Mf e L1((0,1)) <= fe L(logL)((0,1)).
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Endpoint estimates near L'

Corollary

Let1 < pp < o0, s > 0 and let T be a sublinear operator such

that
T:LP(v) — LP(v), V2, -

Then,
T : L(log L)SPo=1) — [}

is also bounded.
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Endpoint estimates near L'

Theorem

Let1 < pp < oo, s> 0and let T be a sublinear operator such
that
T:LP(v) — LP(v), Vi3,

Then,
T : L(log L)SPo=D(u) —s L} (u)

is also bounded, for every u € A;.
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Endpoint estimates near L'

If a sublinear operator T satisfies that

T:1P(u) — LP(v), (p—1)"",m>0,

then
T : L(log L)™(11) — AL(W) C Lips(v)

v
Remark on Lorentz spaces

I 1P e e

4

MJC, J. Funct. Anal. 174 (2000).
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The convergence of Fourier series for functions in
L'(0,1)

Main motivation: Convergence of the Fourier series

In 1967 Hunt proved that

1
* w0 1) < ——|E|V/P
18" xEll e 0,1) S 5= TIEIVE,

where

S*f(x) =sup Snf(x),  Snf(x)= > F(k)e?m™
N IK[<N

Then

S*: LP1(0,1) — L'(0,1), S| < —,
(0,1) (0,1) 1S*|l (=172

4
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The convergence of Fourier series for functions in
L'(0,1)

Main motivation: Convergence of the Fourier series

S*: L(log L)3(0,1) — L'(0,1).
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The convergence of Fourier series for functions in
L'(0,1)

Main motivation: Convergence of the Fourier series
S*: L(log L)3(0,1) — L'(0,1).

In 1996, Antonov used Hunt's estimate to obtain the
convergence for functions in Llog L log log log L(0, 1) where

L(log L)2(0,1) C Llog Llogloglog L(0,1) C Llog L(0,1).

Maria J. Carro Endpoint estimates for Rubio de Francia operators



The convergence of Fourier series for functions in

L1(0,1)

Main motivation: Convergence of the Fourier series

S*: L(log L)?(0,1) — L'(0,1).

In 1996, Antonov used Hunt's estimate to obtain the
convergence for functions in Llog Llog log log L(0, 1) where

L(log L)2(0,1) C Llog Llogloglog L(0,1) C Llog L(0, 1).
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Extensions of Yano's theorem

@ Different endpoints

T:LP— 1P TSP Vp<oo,
1

(p1 — P)>’
1

(P — po)*’

T:LP— 1P T < Vp < py < oo,

T:LP— P T < Vp>po>1.

Maria J. Carro Endpoint estimates for Rubio de Francia operators



Extensions of Yano's theorem

@ Different endpoints

T:LP— 1P TSP Vp<oo,
1

(p1 — P)>’
1

(P — po)*’

T:LP—LP |T|S Vp < pi < oo,

T:LP— P T < Vp>po>1.

@ Different norm behaviour

1
. |P p < _
T:LP— L ||T||N|og<p_1>.
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Extensions of Yano's theorem

@ Different endpoints

T:LP— 1P TSP Vp<oo,
1

(p1 — P)>’
1

(P — po)*’

T:LP—LP |T|S Vp < pi < oo,

T:LP— P T < Vp>po>1.

@ Different norm behaviour

1
. |P p < _
T:LP— L ||T||N|og<p_1>.

@ Different types of spaces in the hypotheses.
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Extensions of Yano's theorem

@ Different endpoints

T:LP— 1P TSP Vp<oo,
1

(p1 — P)>’
1

(P — po)*’

T:LP—LP |T|S Vp < pi < oo,

T:LP— P 1T < Vo>po>1.
@ Different norm behaviour

@ Different types of spaces in the hypotheses.
@ An abstract theory (M. Milman and B. Jawerth).
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Rubio de Francia operator

Let T be a RF operator such that
T:LP(v) — (), VIla, -
Then
T LP(v) — LP(v), IV[1%,
T o () — 1P=(v), Vil
with
r<o<s,
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Rubio de Francia operator

1 2
IMlz0)siz0) S VA 1Mz iz S VI

1 2
M| 2y s 2oy S VI,

.
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Endpoint estimates near L'

Theorem (Yano's type result)

If a sublinear operator T satisfies that
T:LPY(u) — LP®w), (p—1)"",m>0,

then
T : L(log L) (logg L)(11) — Lipo(¥),
where logs = log log log.

MJC and J. Martin, Rev. Mat. Iberoamericana 20 (2004).
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Summarize;

T P(w) - IP(w)

T: IP(w) - IP™(w)

T [P} w) - [P0 (w)

T': [®(y) — [P®(w)

N TS Tl TS ol TS wl,
T:I7(u) - L?’( ) | TiIP) o X)) | T:DPoIm(u) = IP°(u) | T IP(u) = [P()
PlSeamn | MlSepen | WlSeer | 1S g

L{og Ly*~"fu)

L(log L)V og, L{u)

L{log Ly ®=1*log, L(u)
b= min(1,py - 1)

(¢, 0)-atomic case: b=0

[log L~ logy L)

M.C. and C. Domingo-Salazar, TAMS, 2016
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How can we prove that Yano's type results?

The ODR technique

@ O: Optimization

© D: Decomposition

© R: Reconstruction
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Optimization of Hypotheses.

To obtain an endpoint estimate for a subset O of L'(u)

0= {f € L) N L®(w) ¢ [1Fll ooy < 1}_

1/p
U 11l 1)

(p—1)e . (p—1)

Hence, taking the infimum over 1 < p < 2 on the right hand
side, we obtain

1Ty S 1Tl S

1 «
Mooy =Wy | e —~) - Y1eO
1Tl < 1 “uw( 1nf||u<u>
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To find a decomposition of a function f € L'(x) as a linear

combination of functions in ©
1) Dyadic decomposition:

. o |
f:ZQlf,- where ﬁ:%.
i€z

2) k-dyadic decomposition:

on fX1d, 1<|fl<dn
f=>dfr  dh=22" and f = =l
n>0 k-times

with d_; = 0. If kK = 2, we call super-dyadic decomposition.
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Reconstruction.

To gather the obtained information.

, . 1 “
1Ty S D2 N Thillirgy S D2 fill 1 | loss AT
1£ill 10

i€Z i€Z

(%) 1 @
w
< /(; )‘f (S) (Iog1 )\?(S)) as < Hf”L(Iog Lyx(p) >
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Reconstruction.

To gather the obtained information.

, . 1 “
1Ty S D2 N Thillirgy S D2 fill 1 | loss AT
1£ill 10

i€Z i€Z

oo 1 @
"
S J 0 (lomr ) 905 Mt |

What if the final space is not Banach?.

H TfHL1a°°(V) 5 22’ IOgIH Tfi”L17°°(V) SJ T S HfHL(IogL)O‘(IoglogL)(u) i
i€z

4
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Reconstruction.

Can we improve the previous estimate?.

The idea (original inspired by the work of Antonov) was to
consider the super-dyadic decomposition

||Tf||L1,oo(V) = 222/ Iogi||Tfi||L17°°(1/)
i€Z
S 0 S IllLrog Ly=(rog loglog L)(u) -

.
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Multilinear operators (Bilinear)

An operator

B:XxY —Z7

is said to be bilinear if it is linear in each variable. And, we
say it is bounded if

1BOG Yz < Ixx|lylly

Bilinear Hilbert trasform

B(F, g)(x) = p.v / x—1Hg X+t)dt
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Bilinear Yano's extrapolation

Goal L. Sdnchez-Pascuala, PhD Thesis (Advisors: MJC and T.

Luque). May 6, 2025

Let B be a bilinear operator such that,

. P1r e S
B: [Pt x [Ple s [ PS

1 1
Bl <o [ —— ),
| “Nw<1P1—Q1\)¢2<\P2—Q2\>

where ry € {1, py,00}, o € {1, P2, 00}, s € {p, 0}.

with

M. C., T. Luque and L. Sdnchez-Pascuala, Linear and Bilinear Yano's extrap-
olation for Lorentz spaces. In preparation.
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Bilinear Yano's extrapolation

P2
‘(1 1 %)
B:LPx P — [P,
\\quasi-Banach setting
op<t where (p1, p2; p) satisfies
1 11
Banach setting \\ 0 o o
p>1 1
N P1

(o0, 00100) " ‘
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Bilinear Yano's extrapolation
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Bilinear Yano's extrapolation

B:LP x LPe — [P,

1Bl < 1Bl <
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Bilinear Yano's extrapolation

Theorem

Let B be a bilinear operator such that, f

1
B : [Pt x [Pl [P0 B| < ,
S R T

then, for every e > 0,

B : L(log L)*(loglog L)'+ x L(log L)*2(loglog L)1T5 — L}/20e

loc ’

.
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The bilinear Bochner-Riesz

Definition

The bilinear Bochner-Riesz operator with index o > 0

B(1.9) (0= [ [ (1= 16P ~ P12 HOa(n)e €y
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The bilinear Bochner-Riesz

Definition

The bilinear Bochner-Riesz operator with index o > 0

B(1.9) (0= [ [ (1= 16P ~ P12 HOa(n)e €y

@ Fora>n-— % B“ is bounded for every 1 < py, p2 < o0,

@ o = n— } isthe critical index.
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The bilinear Bochner-Riesz operator

Easy case

If o> n— 3, then

B(f,g) < Mf(x)Mg(x).

4
In this case:

For which (p1, p2; p), it holds that

B* : [P'(R") x LP2(R") —» LP(R"),

where 1 = 1

5= +éandp1 >1o0rpy, > 1. And,

B*: L'(R") x L'(R") —s LY/2°°(R"),
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Weighted estimates for B2

Theorem
For every vy, v» € Ap,

B2 [2(vg) x [2(vo) — L'(V),

with
o~

3 3
S v, [vala,-

v

K. Jotsaroop, S. Shrivastava, and K. Shuin. Weighted estimates for bilinear
Bochner-Riesz means at the critical index. Potential Anal., (2021).
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Bilinear Rubio de Francia
Theorem (L. Grafakos and J. Martell, (2004) )

If, for some (ry, r2; r) and, for every v; € A,j,

B LM(v1) x L%(vz) — L'(v), 1B S ¥ ([vila, s [Vala, ) -

where ¢ is an increasing function, then, for (p1, p2; p) with
1 < py,p2 < o0 and, for v; € Ap;,

B: LP(vy) x LP2(vp) — LP(v),

with the following operator norm: If 1 < py <, 1<pa<ro
and vy, v» € Ay,

1 N=Pi  Atr—p 1 P2 4in_p
< - 1 1 . 2 2
||B||sz}<(l_.,1 =) Wl ()T el )

v
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Bilinear Rubio de Francia Theorem

1
Pe (1.1:3)
(r,r2;r) 1
Pt
(00, 00; )
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Bilinear Rubio de Francia Theorem

1

Pe (1,1:3)
(ry,r2;71) 1
pr
(00, 00; )
1
P2 (1,1 %)
E (r,r;r) E 1
1 : E
(oo,oo;ooﬁ
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The bilinear Bochner-Riesz operator at the critical

index
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Weighted estimates for B2

Corollary

Forevery1 <p;<2and1<p, <2

B:LP x [P [P,

<) ()

with

1
Bz
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The bilinear Bochner-Riesz operator of index

—n-1
a=n-—z3

Theorem: the one weight case (1,1;1/2)

For everye > 0, v € Ay, and
D(v) := L(log L)3(logy L)"*)(v),
we have that

B2 . D(v) x D(v) —s R C L/>*(v),

loc
where )
tefx(t
£l = sup 20
>0 (logq t)
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The bilinear Bochner-Riesz operator of index

—n-1
a=n-—z3

Theorem: the two weight case (1,1;1/2)

Foreverye >0, vi,vo € Ay, v = v11/2 1/2

D(v)) := L(log L)®(logz L)"*°)(v}),

,and

we have that

B"2 : D(v1) x D(v2) — R C L/2™(v),

loc

where
t2f: (1)
5

fllg = sup
1A t>0 (logq t)
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Thanks for your attention!
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