

Projection constants of Banach spaces of multivariate polynomials on domains with generic group structures

Andreas Defant

International Workshop on Functional Analysis

Valencia, June 17-19, 2025

A Conference to honour the 70th Birthday of José Bonet

41 years ago

24 years later

Today

Back to mathematics ...

Meeting the team ...

Projection constants: **The definition**

Relative projection constant

Let X be a subspace of a Banach space Y . Then

$$\lambda(X, Y) := \inf \{ \|P\| : P \in \mathcal{L}(Y) \text{ projection onto } X \}$$

Relative projection constant

Let X be a subspace of a Banach space Y . Then

$$\lambda(X, Y) := \inf \{ \|P\| : P \in \mathcal{L}(Y) \text{ projection onto } X \}$$

Absolute projection constant

$$\lambda(X) := \sup \lambda(X, Y),$$

the supremum taken over all Y containing X as an isometric copy

Crucial for our purpose

For every **finite-dimensional** subspace S of $C(K)$ we have

$$\lambda(S) = \lambda(S, C(K)),$$

Crucial for our purpose

For every **finite-dimensional** subspace S of $C(K)$ we have

$$\lambda(S) = \lambda(S, C(K)),$$

and then there is a so-called **minimal projection** $P \in \mathcal{L}(C(K))$ onto S , that is,

$$\lambda(S) = \|P : C(K) \rightarrow S\|$$

A first orientation: The theorem of Kadets-Snobar

Kadets-Snobar Theorem 1971

For every fin.-dim. Banach space X

$$\lambda(X) \leq \sqrt{\dim X}$$

Kadets-Snobar Theorem 1971

For every fin.-dim. Banach space X

$$\lambda(X) \leq \sqrt{\dim X}$$

Hahn-Banach theorem

$$\lambda(\ell_\infty^n) = 1$$

Aims of our project

We study the projection constants of

- spaces of polynomials defined on fin.-dim. Banach spaces,

We study the projection constants of

- spaces of polynomials defined on fin.-dim. Banach spaces,

and more specifically,

- ... on Banach spaces which have 'a generic group structure'

We study the projection constants of

- spaces of polynomials defined on fin.-dim. Banach spaces,

and more specifically,

- ... on Banach spaces which have 'a generic group structure'

Our program includes applications to spaces of

- polynomials on fin.-dim. Hilbert spaces,
- trigonometric polynomials,
- functions on Boolean cubes,
- Dirichlet polynomials,
- polynomials on $\mathcal{L}(\ell_2^n)$, ...

Inspiring examples

- Lozinski-Kharshiladze 1948:

$$\lambda(\mathbf{Trig}_{\leq d}(\mathbb{T})) = \frac{4}{\pi^2} \log(d+1) + o(1)$$

Inspiring examples

- Lozinski-Kharshiladze 1948:

$$\lambda(\mathbf{Trig}_{\leq d}(\mathbb{T})) = \frac{4}{\pi^2} \log(d+1) + o(1)$$

- Ryll-Wojtaszczyk 1983: In the complex case

$$\lambda(\mathcal{P}_d(\ell_2^n)) = \frac{\Gamma(n+d)\Gamma(1+\frac{d}{2})}{\Gamma(1+d)\Gamma(n+\frac{d}{2})}$$

Inspiring examples

- Lozinski-Kharshiladze 1948:

$$\lambda(\mathbf{Trig}_{\leq d}(\mathbb{T})) = \frac{4}{\pi^2} \log(d+1) + o(1)$$

- Ryll-Wojtaszczyk 1983: In the complex case

$$\lambda(\mathcal{P}_d(\ell_2^n)) = \frac{\Gamma(n+d)\Gamma(1+\frac{d}{2})}{\Gamma(1+d)\Gamma(n+\frac{d}{2})}$$

- D-Frerick 2011: For $1 \leq r \leq \infty$ and in the real/complex case

$$\lambda(\mathcal{P}_d(\ell_r^n)) \sim_{C^d} \left(1 + \frac{n}{d}\right)^{d\left(1 - \frac{1}{\min\{r, 2\}}\right)}$$

**A conceptual scenario:
one possibility**

Setting

Let G be a compact topological group, and S a fin.-dim. subspace of $C(G)$. Consider the isometric embedding

$$S \hookrightarrow C(G)$$

Setting

Let G be a compact topological group, and S a fin.-dim. subspace of $C(G)$. Consider the isometric embedding

$$S \hookrightarrow C(G)$$

and the translation operators

- **Abelian case:** $\Phi_g : C(G) \rightarrow C(G)$, $f(x) \mapsto f(g^{-1}x)$
- **Non-Abelian case:** $\Phi_{g,h} : C(G) \rightarrow C(G)$, $f(x) \mapsto f(g^{-1}xh)$

Setting

Let G be a compact topological group, and S a fin.-dim. subspace of $C(G)$. Consider the isometric embedding

$$S \hookrightarrow C(G)$$

and the translation operators

- **Abelian case:** $\Phi_g : C(G) \rightarrow C(G)$, $f(x) \mapsto f(g^{-1}x)$
- **Non-Abelian case:** $\Phi_{g,h} : C(G) \rightarrow C(G)$, $f(x) \mapsto f(g^{-1}xh)$

An extension of this setting to so-called homogeneous compact Hausdorff spaces is possible ...

Definition

Let G be a compact group, and S a fin.-dim. subspace of $C(G)$.

- **S G -invariant** \Leftrightarrow S invariant under all translation operators

Definition

Let G be a compact group, and S a fin.-dim. subspace of $C(G)$.

- **S G -invariant** : \Leftrightarrow S invariant under all translation operators
- **S G -accessible** : \Leftrightarrow

The restriction of the orthogonal projection $\pi_S : L_2(G) \rightarrow S$ to $C(G)$ is the unique projection from $C(G)$ onto S , which commutes with all translation operators.

Definition

Let G be a compact group, and S a fin.-dim. subspace of $C(G)$.

- S **G -invariant** : \Leftrightarrow S invariant under all translation operators
- S **G -accessible** : \Leftrightarrow

The restriction of the orthogonal projection $\pi_S : L_2(G) \rightarrow S$ to $C(G)$ is the unique projection from $C(G)$ onto S , which commutes with all translation operators.

Theorem - team

$$S \text{ is } G\text{-invariant} \Leftrightarrow S \text{ is } G\text{-accessible}$$

Averaging projections

Theorem - team

For every fin.-dim. G -invariant subspace S of $C(G)$

$$\lambda(S) = \|\pi_S : C(G) \rightarrow S\|$$

Theorem - team

For every fin.-dim. G -invariant subspace S of $C(G)$

$$\lambda(S) = \|\pi_S : C(G) \rightarrow S\| = \int_G |\mathbf{k}_S(e, \cdot)| dm$$

Reproducing kernel

There is a unique continuous function $\mathbf{k}_S : G \times G \rightarrow \mathbb{C}$ such that for all $x \in G$

$$(\pi_S f)(x) = \langle f, \mathbf{k}_S(x, \cdot) \rangle_{L_2(G)} \quad \text{for all } f \in L_2(G)$$

Proof of the first part

Given any projection $\mathbf{Q} : C(G) \rightarrow S$, we have to show that

$$\|\pi_S : C(G) \rightarrow S\| \leq \|\mathbf{Q} : C(G) \rightarrow S\|$$

Proof of the first part

Given any projection $\mathbf{Q} : C(G) \rightarrow S$, we have to show that

$$\|\pi_S : C(G) \rightarrow S\| \leq \|\mathbf{Q} : C(G) \rightarrow S\|$$

- Prove that

$$\pi_S = \int_G \int_G \Phi_{g,h}^{-1} \circ \mathbf{Q} \circ \Phi_{g,h} \, dg \, dh : C(G) \rightarrow S$$

- Then the conclusion follows by the 'triangle inequality'.

Two Abelian examples

Definition

Let $\mathcal{B}_{\leq d}^N$ be the Banach space of all functions

$$f : \{1, -1\}^N \rightarrow \mathbb{R}$$

of degree $\leq d$,

Definition

Let $\mathcal{B}_{\leq d}^N$ be the Banach space of all functions

$$f : \{1, -1\}^N \rightarrow \mathbb{R}$$

of degree $\leq d$, that is, have a Fourier-Walsh expansion:

$$f(x) = \sum_{\substack{A \subset \{1, \dots, N\} \\ |A| \leq d}} \widehat{f}(A) \prod_{\mathbf{n} \in A} \mathbf{x}_{\mathbf{n}}, \quad x \in \{\pm 1\}^N$$

Definition

Let $\mathcal{B}_{\leq d}^N$ be the Banach space of all functions

$$f : \{1, -1\}^N \rightarrow \mathbb{R}$$

of degree $\leq d$, that is, have a Fourier-Walsh expansion:

$$f(x) = \sum_{\substack{A \subset \{1, \dots, N\} \\ |A| \leq d}} \widehat{f}(A) \prod_{\mathbf{n} \in A} \mathbf{x}_{\mathbf{n}}, \quad x \in \{\pm 1\}^N$$

Problem 1

$$\lambda(\mathcal{B}_{\leq d}^N) = ?$$

Theorem - team

$$\lambda(\mathcal{B}_{\leq d}^N) = \frac{1}{2^N} \sum_{x \in \{\pm 1\}^N} \left| \sum_{\substack{A \subset \{1, \dots, N\} \\ |A| \leq d}} \prod_{n \in A} x_n \right|$$

Theorem - team

$$\lambda(\mathcal{B}_{\leq d}^N) = \frac{1}{2^N} \sum_{x \in \{\pm 1\}^N} \left| \sum_{\substack{A \subset \{1, \dots, N\} \\ |A| \leq d}} \prod_{n \in A} x_n \right|$$

and, fixing d ,

$$\begin{aligned} \lim_{N \rightarrow \infty} \frac{\lambda(\mathcal{B}_{\leq d}^N)}{\sqrt{\dim \mathcal{B}_{\leq d}^N}} &= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \frac{|h_d(t)|}{\sqrt{d!}} e^{-\frac{t^2}{2}} dt \\ &= \frac{2^{7/4}}{\pi^{5/4}} \frac{1}{d^{1/4}} \left(1 + O\left(\frac{1}{d^2}\right) \right), \end{aligned}$$

where h_d is the d -th Hermite polynomial

Problem 2

Find the projection constant

$$\lambda(\mathcal{H}_\infty^{\leq x}) = ?$$

where $\mathcal{H}_\infty^{\leq x}$ stands for the Banach space of all Dirichlet polynomials of length x :

$$\sum_{n \leq x} a_n n^{-s}, \quad s \in \mathbb{C}$$

Problem 2

Find the projection constant

$$\lambda(\mathcal{H}_\infty^{\leq x}) = ?$$

where $\mathcal{H}_\infty^{\leq x}$ stands for the Banach space of all Dirichlet polynomials of length x :

$$\sum_{n \leq x} a_n n^{-s}, \quad s \in \mathbb{C}$$

Theorem - team

$$\lambda(\mathcal{H}_\infty^{\leq x}) = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^T \left| \sum_{n \leq x} n^{-it} \right| dt$$

Problem 2

Find the projection constant

$$\lambda(\mathcal{H}_\infty^{\leq x}) = ?$$

where $\mathcal{H}_\infty^{\leq x}$ stands for the Banach space of all Dirichlet polynomials of length x :

$$\sum_{n \leq x} a_n n^{-s}, \quad s \in \mathbb{C}$$

Theorem - team

$$\lambda(\mathcal{H}_\infty^{\leq x}) = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^T \left| \sum_{n \leq x} n^{-it} \right| dt \sim \frac{\sqrt{x}}{(\log \log x)^{\frac{1}{4}}}$$

The asymptotic order of the integral is a recent deep result of Harper from 2019 in probabilistic analytic number theory ...

Two non-Abelian examples

Problem 3

Find

$$\lambda(\mathcal{S}_1(\ell_2^n)) = ?$$

where $\mathcal{S}_1(\ell_2^n)$ stands for the Schatten 1-class on the Hilbert space ℓ_2^n

Problem 3

Find

$$\lambda(\mathcal{S}_1(\ell_2^n)) = ?$$

where $\mathcal{S}_1(\ell_2^n)$ stands for the Schatten 1-class on the Hilbert space ℓ_2^n

Gordon-Lewis 1974

$$\frac{n}{3} \leq \lambda(\mathcal{S}_1(\ell_2^n)) \leq n$$

Problem 3

Find

$$\lambda(\mathcal{S}_1(\ell_2^n)) = ?$$

where $\mathcal{S}_1(\ell_2^n)$ stands for the Schatten 1-class on the Hilbert space ℓ_2^n

Gordon-Lewis 1974

$$\frac{n}{3} \leq \lambda(\mathcal{S}_1(\ell_2^n)) \leq n$$

Theorem - team

$$\lambda(\mathcal{S}_1(\ell_2^n)) = n \int_{\mathcal{U}_n} |\text{tr}(V)| dV$$

Problem 3

Find

$$\lambda(\mathcal{S}_1(\ell_2^n)) = ?$$

where $\mathcal{S}_1(\ell_2^n)$ stands for the Schatten 1-class on the Hilbert space ℓ_2^n

Gordon-Lewis 1974

$$\frac{n}{3} \leq \lambda(\mathcal{S}_1(\ell_2^n)) \leq n$$

Theorem - team

$$\lambda(\mathcal{S}_1(\ell_2^n)) = n \int_{\mathcal{U}_n} |\text{tr}(V)| dV$$

and

$$\lim_{n \rightarrow \infty} \frac{\lambda(\mathcal{S}_1(\ell_2^n))}{n} = \frac{\sqrt{\pi}}{2}$$

How to use the general scheme?

$$\mathcal{S}_1(\ell_2^n) = \mathcal{L}(\ell_2^n)^*$$

How to use the general scheme?

$\mathcal{S}_1(\ell_2^n) = \mathcal{L}(\ell_2^n)^* \hookrightarrow C(\mathcal{U}_n)$, $V \mapsto [U \mapsto \text{tr}(VU)]$ isometrically

Problem 4

$$\lambda\left(\mathcal{P}_d(\mathcal{L}(\ell_2^n))\right) = ?$$

where $\mathcal{P}_d(\mathcal{L}(\ell_2^n))$ stands for the d -homogeneous polynomials on $\mathcal{L}(\ell_2^n)$

Problem 4

$$\lambda\left(\mathcal{P}_d\left(\mathcal{L}(\ell_2^n)\right)\right) = ?$$

where $\mathcal{P}_d\left(\mathcal{L}(\ell_2^n)\right)$ stands for the d -homogeneous polynomials on $\mathcal{L}(\ell_2^n)$

Theorem - team

$$\lambda\left(\mathcal{P}_2\left(\mathcal{L}(\ell_2^n)\right)\right) = \frac{n}{2} \int_{\mathcal{U}_n} |\text{tr}(U^2) + n\text{tr}(U)| dU$$

Problem 4

$$\lambda\left(\mathcal{P}_d(\mathcal{L}(\ell_2^n))\right) = ?$$

where $\mathcal{P}_d(\mathcal{L}(\ell_2^n))$ stands for the d -homogeneous polynomials on $\mathcal{L}(\ell_2^n)$

Theorem - team

$$\lambda\left(\mathcal{P}_2(\mathcal{L}(\ell_2^n))\right) = \frac{n}{2} \int_{\mathcal{U}_n} |\text{tr}(U^2) + n\text{tr}(U)| dU$$

and

$$\lim_{n \rightarrow \infty} \frac{\lambda\left(\mathcal{P}_2(\mathcal{L}(\ell_2^n))\right)}{\sqrt{\dim \mathcal{P}_2(\mathcal{L}(\ell_2^n))}} = \frac{1}{\sqrt{2}}$$

Problem 4

$$\lambda\left(\mathcal{P}_d(\mathcal{L}(\ell_2^n))\right) = ?$$

where $\mathcal{P}_d(\mathcal{L}(\ell_2^n))$ stands for the d -homogeneous polynomials on $\mathcal{L}(\ell_2^n)$

Theorem - team

$$\lambda\left(\mathcal{P}_2(\mathcal{L}(\ell_2^n))\right) = \frac{n}{2} \int_{\mathcal{U}_n} |\text{tr}(U^2) + n\text{tr}(U)| dU$$

and

$$\lim_{n \rightarrow \infty} \frac{\lambda\left(\mathcal{P}_2(\mathcal{L}(\ell_2^n))\right)}{\sqrt{\dim \mathcal{P}_2(\mathcal{L}(\ell_2^n))}} = \frac{1}{\sqrt{2}}$$

We so far don't know the analog result for $d = 3, 4, 5, \dots$

Team work:

- Projection constants for spaces of Dirichlet polynomials; *Mathematische Annalen* 2024
- Asymptotic insights for projection, Gordon-Lewis, and Sidon constants of Boolean Cube function spaces; *International Mathematical Research Notices* 2024
- An integral formula for the projection constant of the trace class; *Analysis&PDE* 2024
- Minimal projections onto spaces of polynomials on real euclidean spheres; submitted 2025
- Projection constants of spaces of bihomogeneous polynomials on complex euclidean spheres; submitted 2025
- Local constants and Bohr's phenomenon for Banach spaces of analytic polynomials; submitted 2025
- Projection constants of spaces of multivariate polynomials; an arXiv manuscript 2022 that is gradually improved ...