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Back to mathematics ...



Meeting the team ...
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Projection constants:

The definition



Relative projection constant

Let X be a subspace of a Banach space Y . Then

λ(X,Y ) := inf
{
‖P‖ : P ∈ L(Y ) projection onto X

}

Absolute projection constant

λ(X) := sup λ(X,Y ) ,

the supremum taken over all Y containing X as an isometric copy
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Crucial for our purpose

For every finite-dimensional subspace S of C(K) we have

λ(S) = λ(S,C(K)) ,

and then there is a so-called minimal projection P ∈ L(C(K))

onto S, that is,

λ(S) = ‖P : C(K)→ S‖
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A first orientation:

The theorem of Kadets-Snobar



Kadets-Snobar Theorem 1971

For every fin.-dim. Banach space X

λ(X) ≤
√

dimX

Hahn-Banach theorem

λ(`n∞) = 1
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Aims of our project



We study the projection constants of

� spaces of polynomials defined on fin.-dim. Banach spaces,

and more specifically,

� ... on Banach spaces which have ’a generic group structure’

Our program includes applications to spaces of

� polynomials on fin.-dim. Hilbert spaces,

� trigonometric polynomials,

� functions on Boolean cubes,

� Dirichlet polynomials,

� polynomials on L(`n2 )L(`n2 )L(`n2 ), ...
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Inspiring examples

� Lozinski-Kharshiladze 1948:

λ
(
Trig≤d(T)Trig≤d(T)Trig≤d(T)

)
=

4

π2
log(d+ 1) + o(1)

� Ryll-Wojtaszczyk 1983: In the complex case

λ
(
Pd(`n2 )Pd(`n2 )Pd(`n2 )

)
=

Γ(n+ d)Γ(1 + d
2 )

Γ(1 + d)Γ(n+ d
2 )

� D-Frerick 2011: For 1 ≤ r ≤ ∞ and in the real/complex case

λ
(
Pd(`nrPd(`nrPd(`nr )

)
∼Cd

(
1 +

n

d

)d(1− 1
min{r,2} )
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A conceptual scenario:

one possibility



Setting

Let G be a compact topological group, and S a fin.-dim. subspace of

C(G). Consider the isometric embedding

S ↪→ C(G)S ↪→ C(G)S ↪→ C(G)

and the translation operators

� Abelian case: Φg : C(G)→ C(G) , f(x) 7→ f(g−1x)f(x) 7→ f(g−1x)f(x) 7→ f(g−1x)

� Non-Abelian case: Φg,h : C(G)→ C(G) , f(x) 7→ f(g−1xh)f(x) 7→ f(g−1xh)f(x) 7→ f(g−1xh)

An extension of this setting to so-called homogeneous compact

Hausdorff spaces is possible ...
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Definition

Let G be a compact group, and S a fin.-dim. subspace of C(G).

� SSS GGG-invariant :⇔:⇔:⇔ S invariant under all translation operators

� SSS GGG-accessible :⇔:⇔:⇔

The restriction of the orthogonal projection πS : L2(G)→ SπS : L2(G)→ SπS : L2(G)→ S to

C(G) is the unique projection from C(G) onto S, which commutes

with all translation operators.

Theorem - team

SSS is GGG-invariant ⇔⇔⇔ SSS is GGG-accessible
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Averaging projections



Theorem - team

For every fin.-dim. G-invariant subspace S of C(G)

λ(S) =
∥∥πππS : C(G)→ S

∥∥

=

∫
G

|kS(e, ···)|dm

Reproducing kernel

There is a unique continuous function kS : G×G→ C such that for

all x ∈ G

(πππSf)(x) =
〈
f,kS(x, ···)

〉
L2(G)

for all f ∈ L2(G)
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Proof of the first part

Given any projection Q : C(G)→ S, we have to show that

‖πππS : C(G)→ S‖ ≤ ‖Q : C(G)→ S‖‖πππS : C(G)→ S‖ ≤ ‖Q : C(G)→ S‖‖πππS : C(G)→ S‖ ≤ ‖Q : C(G)→ S‖

� Prove that

πππS =

∫
G

∫
G

Φ−1g,h ◦Q ◦ Φg,hΦ−1g,h ◦Q ◦ Φg,hΦ−1g,h ◦Q ◦ Φg,h dg dh : C(G)→ S

� Then the conclusion follows by the ’triangle inequality’.

13
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Two Abelian examples



Definition

Let BN≤dBN≤dBN≤d be the Banach space of all functions

f : {1,−1}N → Rf : {1,−1}N → Rf : {1,−1}N → R

of degree ≤ d,

that is, have a Fourier-Walsh expansion:

f(x) =
∑

A⊂{1,...,N}
|A|≤d

f̂(A)
∏
n∈A

xn
∏
n∈A

xn
∏
n∈A

xn , x ∈ {±1}N

Problem 1

λ(BN≤d) = ???λ(BN≤d) = ???λ(BN≤d) = ???
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Theorem - team

λ
(
BN≤d

)
=

1

2N

∑
x∈{±1}N

1

2N

∑
x∈{±1}N

1

2N

∑
x∈{±1}N

∣∣∣ ∑
A⊂{1,...,N}
|A|≤d

∏
n∈A

xn
∑

A⊂{1,...,N}
|A|≤d

∏
n∈A

xn
∑

A⊂{1,...,N}
|A|≤d

∏
n∈A

xn

∣∣∣

and, fixing d,

lim
N→∞

λ
(
BN≤d

)√
dimBN≤d

=
1√
2π

∫
R

|hd(t)hd(t)hd(t)|√
d!

e−
t2

2 dt

=
27/4

π5/4

1

d1/4

(
1 +O

( 1

d2

))
,

where hd is the d-th Hermite polynomial

15



Theorem - team

λ
(
BN≤d

)
=

1

2N

∑
x∈{±1}N

1

2N

∑
x∈{±1}N

1

2N

∑
x∈{±1}N

∣∣∣ ∑
A⊂{1,...,N}
|A|≤d

∏
n∈A

xn
∑

A⊂{1,...,N}
|A|≤d

∏
n∈A

xn
∑

A⊂{1,...,N}
|A|≤d

∏
n∈A

xn

∣∣∣
and, fixing d,

lim
N→∞

λ
(
BN≤d

)√
dimBN≤d

=
1√
2π

∫
R

|hd(t)hd(t)hd(t)|√
d!

e−
t2

2 dt

=
27/4

π5/4

1

d1/4

(
1 +O

( 1

d2

))
,

where hd is the d-th Hermite polynomial

15



Problem 2

Find the projection constant

λ(H≤x∞ ) = ???λ(H≤x∞ ) = ???λ(H≤x∞ ) = ???

where H≤x∞H≤x∞H≤x∞ stands for the Banach space of all Dirichlet polynomials

of length x: ∑
n≤x

ann
−s, s ∈ C

∑
n≤x

ann
−s, s ∈ C

∑
n≤x

ann
−s, s ∈ C

Theorem - team

λ
(
H≤x∞

)
= lim

T→∞

1

2T

∫ T

−T

∣∣∣∑
n≤xxx

n−it
∣∣∣dt

∼
√
x

(log log x)
1
4

The asymptotic order of the integral is a recent deep result of

Harper from 2019 in probabilistic analytic number theory ...

16



Problem 2

Find the projection constant

λ(H≤x∞ ) = ???λ(H≤x∞ ) = ???λ(H≤x∞ ) = ???

where H≤x∞H≤x∞H≤x∞ stands for the Banach space of all Dirichlet polynomials

of length x: ∑
n≤x

ann
−s, s ∈ C

∑
n≤x

ann
−s, s ∈ C

∑
n≤x

ann
−s, s ∈ C

Theorem - team

λ
(
H≤x∞

)
= lim

T→∞

1

2T

∫ T

−T

∣∣∣∑
n≤xxx

n−it
∣∣∣dt

∼
√
x

(log log x)
1
4

The asymptotic order of the integral is a recent deep result of

Harper from 2019 in probabilistic analytic number theory ...

16



Problem 2

Find the projection constant

λ(H≤x∞ ) = ???λ(H≤x∞ ) = ???λ(H≤x∞ ) = ???

where H≤x∞H≤x∞H≤x∞ stands for the Banach space of all Dirichlet polynomials

of length x: ∑
n≤x

ann
−s, s ∈ C

∑
n≤x

ann
−s, s ∈ C

∑
n≤x

ann
−s, s ∈ C

Theorem - team

λ
(
H≤x∞

)
= lim

T→∞

1

2T

∫ T

−T

∣∣∣∑
n≤xxx

n−it
∣∣∣dt ∼ √

x

(log log x)
1
4

The asymptotic order of the integral is a recent deep result of

Harper from 2019 in probabilistic analytic number theory ...
16



Two non-Abelian examples



Problem 3

Find

λ
(
S1(`n2 )

)
= ???λ

(
S1(`n2 )

)
= ???λ

(
S1(`n2 )

)
= ???

where S1(`n2 )S1(`n2 )S1(`n2 ) stands for the Schatten 1-class on the Hilbert space `n2

Gordon-Lewis 1974

n

3
≤ λ

(
S1(`n2 )

)
≤ n

Theorem - team

λ
(
S1(`n2 )

)
= n

∫
Un
|tr(V )|dV

and

lim
n→∞

λ
(
S1(`n2 )

)
n

=

√
π

2
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How to use the general scheme?

S1(`n2 ) = L(`n2 )∗

↪→ C(Un), V 7→ [U 7→ tr(V U)]V 7→ [U 7→ tr(V U)]V 7→ [U 7→ tr(V U)] isometrically

18
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Problem 4

λ
(
Pd

(
L(`n2 )

))
= ???λ

(
Pd

(
L(`n2 )

))
= ???λ

(
Pd

(
L(`n2 )

))
= ???

where Pd

(
L(`n2 )

)
stands for the d-homogeneous polynomials on L(`n2 )

Theorem - team

λ
(
P2

(
L(`n2 )

))
=
n

2

∫
Un

∣∣tr(U2) + ntr(U)
∣∣dU

and

lim
n→∞

λ
(
P2

(
L(`n2 )

))√
dimP2(L(`n2 ))

=
1√
2

We so far don’t know the analog result for d = 3, 4, 5, . . .d = 3, 4, 5, . . .d = 3, 4, 5, . . .
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Team work:

� Projection constants for spaces of Dirichlet polynomials;

Mathematische Annalen 2024

� Asymptotic insights for projection, Gordon-Lewis, and Sidon

constants of Boolean Cube function spaces; International

Mathematical Research Notices 2024

� An integral formula for the projection constant of the trace class;

Analysis&PDE 2024

� Minimal projections onto spaces of polynomials on real euclidean

spheres; submitted 2025

� Projection constants of spaces of bihomogeneous polynomials on

complex euclidean spheres; submitted 2025

� Local constants and Bohr’s phenomenon for Banach spaces of

analytic polynomials; submitted 2025

� Projection constants of spaces of multivariate polynomials; an

arXiv manuscript 2022 that is gradually improved ...
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