

Commutativity in non-elliptic iteration

Santiago Díaz-Madrigal

Departamento de Matematica Aplicada II

Universidad de Sevilla

*(based on joint works with M.D. Contreras [Universidad de Sevilla]
and P. Gumenyuk [Politecnico di Milano])*

INTERNATIONAL WORKSHOP ON FUNCTIONAL ANALYSIS
ON THE OCCASION OF THE 70TH BIRTHDAY OF JOSÉ BONET
Valencia, June 16th 2025-June 19th 2025

Table of contents

1. Commutativity and canonical models
2. The hyperbolic case
3. The parabolic zero case
4. The parabolic positive case
5. The parabolic case: constant of simultaneous linearisation
6. Abelian character of the centralizer

Commutativity and canonical models

Commutativity I

Commutativity I

- Centralizer of a function $\varphi \in \text{Hol}(\mathbb{D})$:

$$\mathcal{Z}(\varphi) := \{\psi \in \text{Hol}(\mathbb{D}) : \psi \circ \varphi = \varphi \circ \psi\}.$$

Commutativity I

- Centralizer of a function $\varphi \in \text{Hol}(\mathbb{D})$:

$$\mathcal{Z}(\varphi) := \{\psi \in \text{Hol}(\mathbb{D}) : \psi \circ \varphi = \varphi \circ \psi\}.$$

- Direct analysis: description of the centralizer [in general, completely unfeasible and usually not very useful].

Commutativity I

- Centralizer of a function $\varphi \in \text{Hol}(\mathbb{D})$:

$$\mathcal{Z}(\varphi) := \{\psi \in \text{Hol}(\mathbb{D}) : \psi \circ \varphi = \varphi \circ \psi\}.$$

- Direct analysis: description of the centralizer [in general, completely unfeasible and usually not very useful].
- Indirect analysis: consider a qualitative approach to the centralizers.

Commutativity II

Commutativity II

- In this talk, we will follow the second option using the so-called canonical models; often mentioned as the dynamical approach.

Commutativity II

- In this talk, we will follow the second option using the so-called canonical models; often mentioned as the dynamical approach.
- This approach has a long story. At least, we must cite: Heins (1941), Pranger (1970), Shields (1964), Behan (1973), Cowen (1984), Gentili-Vlacci (1994), Bisi-Gentili (2001).

Commutativity II

- In this talk, we will follow the second option using the so-called canonical models; often mentioned as the dynamical approach.
- This approach has a long story. At least, we must cite: Heins (1941), Pranger (1970), Shields (1964), Behan (1973), Cowen (1984), Gentili-Vlacci (1994), Bisi-Gentili (2001).
- Cowen's paper has been fundamental in the current development of the theory.

Commutativity III

Commutativity III

- In what follows, we assume that $\varphi \in \text{Hol}(\mathbb{D})$ has no fixed point, that is, $\varphi(z) \neq z$, for all $z \in \mathbb{D}$. In other words, we assume that φ is **non-elliptic**.

Commutativity III

- In what follows, we assume that $\varphi \in \text{Hol}(\mathbb{D})$ has no fixed point, that is, $\varphi(z) \neq z$, for all $z \in \mathbb{D}$. In other words, we assume that φ is **non-elliptic**.
- If $\varphi \in \text{Hol}(\mathbb{D})$ is non-elliptic, there exists $\tau \in \partial\mathbb{D}$ such that, for every $z \in \mathbb{D}$, $\lim_{n \rightarrow \infty} \varphi_n(z) = \tau$. This point τ is (clearly) unique and it is called the **Denjoy-Wolff point** of φ .

Commutativity IV

Commutativity IV

- Let $\varphi \in \text{Hol}(\mathbb{D})$ be non-elliptic with Denjoy-Wolf point $\tau \in \partial\mathbb{D}$.

Commutativity IV

- Let $\varphi \in \text{Hol}(\mathbb{D})$ be non-elliptic with Denjoy-Wolf point $\tau \in \partial\mathbb{D}$.
- Koenigs function (informally): $h \in \text{Hol}(\mathbb{D}, \mathbb{C})$ such that

$$h \circ \varphi(z) = h(z) + 1, \quad z \in \mathbb{D},$$

and h is univalent in a certain “nice domain close to τ ”.

Commutativity IV

- Let $\varphi \in \text{Hol}(\mathbb{D})$ be non-elliptic with Denjoy-Wolf point $\tau \in \partial\mathbb{D}$.
- Koenigs function (informally): $h \in \text{Hol}(\mathbb{D}, \mathbb{C})$ such that

$$h \circ \varphi(z) = h(z) + 1, \quad z \in \mathbb{D},$$

and h is univalent in a certain “nice domain close to τ ”.

- It is always possible to find such a Koenigs function and, indeed, with the following property:

$$\Omega := \bigcup_{n=0}^{\infty} (h(\mathbb{D}) - n)$$

is either a horizontal strip, a horizontal half-plane or \mathbb{C} . This subset Ω is called the **base domain** and the triple $(\Omega, h, z \mapsto z + 1)$ a **canonical model** of φ .

Commutativity IV

- Let $\varphi \in \text{Hol}(\mathbb{D})$ be non-elliptic with Denjoy-Wolf point $\tau \in \partial\mathbb{D}$.
- Koenigs function (informally): $h \in \text{Hol}(\mathbb{D}, \mathbb{C})$ such that

$$h \circ \varphi(z) = h(z) + 1, \quad z \in \mathbb{D},$$

and h is univalent in a certain “nice domain close to τ ”.

- It is always possible to find such a Koenigs function and, indeed, with the following property:

$$\Omega := \bigcup_{n=0}^{\infty} (h(\mathbb{D}) - n)$$

is either a horizontal strip, a horizontal half-plane or \mathbb{C} . This subset Ω is called the **base domain** and the triple $(\Omega, h, z \mapsto z + 1)$ a **canonical model** of φ .

- Canonical models always exist and they are essentially unique.

Commutativity V

Commutativity V

- Dynamically speaking, a canonical model tell us that the iterates system

$$n \in \mathbb{N} \mapsto \varphi_n(z), \ z \in \mathbb{D} \quad // \quad n \in \mathbb{N} \mapsto w + n, \ w \in h(\mathbb{D})$$

are equivalent.

Commutativity V

- Dynamically speaking, a canonical model tell us that the iterates system

$$n \in \mathbb{N} \mapsto \varphi_n(z), \quad z \in \mathbb{D} \quad // \quad n \in \mathbb{N} \mapsto w + n, \quad w \in h(\mathbb{D})$$

are equivalent.

- In other words, the dynamical information about (φ_n) is basically encoded in the geometry of $h(\mathbb{D})$.

Commutativity VI

Commutativity VI

- A “simple” remark:

Commutativity VI

- A “simple” remark:
 - Assume φ is univalent with Koenigs function h_φ .

Commutativity VI

- A “simple” remark:
 - Assume φ is univalent with Koenigs function h_φ .
 - Take $c \in \mathbb{C}$ such that $h_\varphi(\mathbb{D}) + c \subset h_\varphi(\mathbb{D})$.

Commutativity VI

- A “simple” remark:
 - Assume φ is univalent with Koenigs function h_φ .
 - Take $c \in \mathbb{C}$ such that $h_\varphi(\mathbb{D}) + c \subset h_\varphi(\mathbb{D})$.
 - Define $\psi(z) := h_\varphi^{-1}(h_\varphi(z) + c)$ [h_φ is also univalent].

Commutativity VI

- A “simple” remark:

- Assume φ is univalent with Koenigs function h_φ .
- Take $c \in \mathbb{C}$ such that $h_\varphi(\mathbb{D}) + c \subset h_\varphi(\mathbb{D})$.
- Define $\psi(z) := h_\varphi^{-1}(h_\varphi(z) + c)$ [h_φ is also univalent].
- Clearly, for every $z \in \mathbb{D}$,

$$\psi \circ \varphi(z) = h_\varphi^{-1}(h_\varphi(z) + 1 + c) = h_\varphi^{-1}(h_\varphi(z) + c + 1) = \varphi \circ \psi(z),$$

thus $\psi \in \mathcal{Z}(\varphi)$.

Commutativity VI

- A “simple” remark:

- Assume φ is univalent with Koenigs function h_φ .
- Take $c \in \mathbb{C}$ such that $h_\varphi(\mathbb{D}) + c \subset h_\varphi(\mathbb{D})$.
- Define $\psi(z) := h_\varphi^{-1}(h_\varphi(z) + c)$ [h_φ is also univalent].
- Clearly, for every $z \in \mathbb{D}$,

$$\psi \circ \varphi(z) = h_\varphi^{-1}(h_\varphi(z) + 1 + c) = h_\varphi^{-1}(h_\varphi(z) + c + 1) = \varphi \circ \psi(z),$$

thus $\psi \in \mathcal{Z}(\varphi)$.

- Note $h_\varphi \circ \psi = h_\varphi + c$ and $h_\varphi \circ \varphi = h_\varphi + 1$.

Commutativity VI

- A “simple” remark:
 - Assume φ is univalent with Koenigs function h_φ .
 - Take $c \in \mathbb{C}$ such that $h_\varphi(\mathbb{D}) + c \subset h_\varphi(\mathbb{D})$.
 - Define $\psi(z) := h_\varphi^{-1}(h_\varphi(z) + c)$ [h_φ is also univalent].
 - Clearly, for every $z \in \mathbb{D}$,

$$\psi \circ \varphi(z) = h_\varphi^{-1}(h_\varphi(z) + 1 + c) = h_\varphi^{-1}(h_\varphi(z) + c + 1) = \varphi \circ \psi(z),$$

thus $\psi \in \mathcal{Z}(\varphi)$.

- Note $h_\varphi \circ \psi = h_\varphi + c$ and $h_\varphi \circ \varphi = h_\varphi + 1$.
- Central question: until what point this “simple geometrical” procedure is the “unique” way to generate elements of $\mathcal{Z}(\varphi)$?

Commutativity VII

Commutativity VII

- **Hyperbolic**: the base domain is a horizontal strip.

Commutativity VII

- **Hyperbolic**: the base domain is a horizontal strip.
- **Parabolic positive**: the base domain is the upper half-plane \mathbb{H} (positive^+) or the lower half-plane $-\mathbb{H}$ (positive^-).

Commutativity VII

- **Hyperbolic**: the base domain is a horizontal strip.
- **Parabolic positive**: the base domain is the upper half-plane \mathbb{H} (positive^+) or the lower half-plane $-\mathbb{H}$ (positive^-).
- **Parabolic zero**: the base domain is \mathbb{C} .

The hyperbolic case

Hyperbolic case I

Hyperbolic case I

Theorem (Heins)

Let $\varphi \in \text{Hol}(\mathbb{D})$ be a hyperbolic automorphism and let h_φ be the Koenigs function of φ . A function $\psi \in \text{Hol}(\mathbb{D})$ different from $\text{id}_{\mathbb{D}}$ commutes with φ if and only if there exists a number $c \in \mathbb{R}$ such that $h_\varphi \circ \psi = h_\varphi + c$.

Hyperbolic case II

Hyperbolic case II

Theorem (Cowen; Behan, Gentili, Vlacci, Bisi)

Let $\varphi \in \text{Hol}(\mathbb{D})$ be hyperbolic, different from an automorphism, with Denjoy-Wolff point $\tau \in \partial\mathbb{D}$ and let h_φ be the Koenigs function of φ . A function $\psi \in \text{Hol}(\mathbb{D})$ different from $\text{id}_{\mathbb{D}}$ commutes with φ if and only if the following two conditions hold:

1. The Denjoy-Wolff point of ψ is τ .
2. There exists a number $c \in \mathbb{R}$ such that $h_\varphi \circ \psi = h_\varphi + c$.

Theorem (Cowen; Behan, Gentili, Vlacci, Bisi)

Let $\varphi \in \text{Hol}(\mathbb{D})$ be hyperbolic, different from an automorphism, with Denjoy-Wolff point $\tau \in \partial\mathbb{D}$ and let h_φ be the Koenigs function of φ . A function $\psi \in \text{Hol}(\mathbb{D})$ different from $\text{id}_{\mathbb{D}}$ commutes with φ if and only if the following two conditions hold:

1. The Denjoy-Wolff point of ψ is τ .
2. There exists a number $c \in \mathbb{R}$ such that $h_\varphi \circ \psi = h_\varphi + c$.

Moreover, if h_φ is univalent, then a function $\psi \in \text{Hol}(\mathbb{D})$ different from $\text{id}_{\mathbb{D}}$ commutes with φ if and only there exists a number $c \in \mathbb{R}$ such that $h_\varphi \circ \psi = h_\varphi + c$.

Hyperbolic case III

Hyperbolic case III

- The previous number c is clearly unique and it is called **the constant of simultaneous linearisation of ψ with respect to φ** and it is denoted as $c_{\varphi, \psi}$.

Hyperbolic case III

- The previous number c is clearly unique and it is called **the constant of simultaneous linearisation of ψ with respect to φ** and it is denoted as $c_{\varphi, \psi}$.
- Indeed, if $\psi \in \mathcal{Z}(\varphi)$,

$$c_{\varphi, \psi} = \frac{\log(\psi'(\tau))}{\log(\varphi'(\tau))}.$$

The parabolic zero case

Theorem (Contreras, Gumenyuk, DM)

Let $\varphi \in \text{Hol}(\mathbb{D})$ be parabolic zero with Denjoy-Wolff point $\tau \in \partial\mathbb{D}$ and let h_φ be the Koenigs function of φ . A function $\psi \in \text{Hol}(\mathbb{D})$ different from $\text{id}_{\mathbb{D}}$ commutes with φ if and only if the following two conditions hold:

1. The Denjoy-Wolff point of ψ is τ .
2. There exists a number $c \in \mathbb{C}$ such that $h_\varphi \circ \psi = h_\varphi + c$.

Theorem (Contreras, Gumenyuk, DM)

Let $\varphi \in \text{Hol}(\mathbb{D})$ be parabolic zero with Denjoy-Wolff point $\tau \in \partial\mathbb{D}$ and let h_φ be the Koenigs function of φ . A function $\psi \in \text{Hol}(\mathbb{D})$ different from $\text{id}_{\mathbb{D}}$ commutes with φ if and only if the following two conditions hold:

1. The Denjoy-Wolff point of ψ is τ .
2. There exists a number $c \in \mathbb{C}$ such that $h_\varphi \circ \psi = h_\varphi + c$.

Moreover, if h_φ is univalent, then a function $\psi \in \text{Hol}(\mathbb{D})$ different from $\text{id}_{\mathbb{D}}$ commutes with φ if and only if there exists a number $c \in \mathbb{C}$ such that $h_\varphi \circ \psi = h_\varphi + c$.

Parabolic zero case II

- The above number c is clearly unique and it is called **the constant of simultaneous linearisation of ψ with respect to φ** and it is denoted as $c_{\varphi, \psi}$.

- The above number c is clearly unique and it is called **the constant of simultaneous linearisation of ψ with respect to φ** and it is denoted as $c_{\varphi, \psi}$.
- There is no a simple formula for $c_{\varphi, \psi}$ as in the hyperbolic case.

The parabolic positive case

Parabolic positive case I

Parabolic positive case I

Theorem (Heins)

Let $\varphi \in \text{Hol}(\mathbb{H})$ be a parabolic automorphism (positive⁺) and let h_φ be the Koenigs function of φ . A function $\psi \in \text{Hol}(\mathbb{H})$ commutes with φ if and only if one of the mutually disjoint situations happens:

1. There exists a number $c \in \mathbb{R}$ such that

$$\psi = h_\varphi^{-1} \circ (h_\varphi + c).$$

2. There exists $F \in \text{Hol}(\mathbb{D}, \mathbb{H})$ such that

$$\psi(w) = h_\varphi^{-1} \circ (h_\varphi(w) + F(e^{2\pi i h_\varphi(w)})), \quad w \in \mathbb{H}.$$

Parabolic positive case I

Theorem (Heins)

Let $\varphi \in \text{Hol}(\mathbb{H})$ be a parabolic automorphism (positive⁺) and let h_φ be the Koenigs function of φ . A function $\psi \in \text{Hol}(\mathbb{H})$ commutes with φ if and only if one of the mutually disjoint situations happens:

1. There exists a number $c \in \mathbb{R}$ such that

$$\psi = h_\varphi^{-1} \circ (h_\varphi + c).$$

2. There exists $F \in \text{Hol}(\mathbb{D}, \mathbb{H})$ such that

$$\psi(w) = h_\varphi^{-1} \circ (h_\varphi(w) + F(e^{2\pi i h_\varphi(w)})), \quad w \in \mathbb{H}.$$

- Our central question has a negative answer in this context.

Parabolic positive case II

Parabolic positive case II

- Central question reformulated: In the parabolic positive case, is there any kind of simultaneously linearization result for two commuting elements?

- Central question reformulated: In the parabolic positive case, is there any kind of simultaneously linearization result for two commuting elements?
- For the sake of clarity, we will restrict to the case of parabolic positive⁺ thus with a canonical model with base domain \mathbb{H} .

Parabolic positive case III

Theorem (Contreras, Gumenyuk, DM)

Let $\varphi \in \text{Hol}(\mathbb{D})$ be parabolic positive⁺ with Koenigs function h_φ and let $\psi \in \mathcal{Z}(\varphi)$. Then, there exist $\beta \in \text{Hol}(\mathbb{H}, \mathbb{C})$ and a number $c \in \mathbb{C}$ such that the following three conditions hold:

1. $\beta(w + 1) = \beta(w) + 1$, for all $w \in \mathbb{H}$.
2. $\beta \circ h_\varphi \circ \varphi = \beta \circ h_\varphi + 1$.
3. $\beta \circ h_\varphi \circ \psi = \beta \circ h_\varphi + c$.

Parabolic positive case IV

Parabolic positive case IV

Theorem (Contreras, Gumenyuk, DM)

The previous simultaneous linearization is essentially unique in the following sense:

Theorem (Contreras, Gumenyuk, DM)

The previous simultaneous linearization is essentially unique in the following sense:

1. *If $(\beta_1, c_1), (\beta_2, c_2) \in \text{Hol}(\mathbb{H}, \mathbb{C}) \times \mathbb{C}$ are two pairs satisfying the previous three conditions, then $c_1 = c_2 \in \overline{\mathbb{H}}$. This allows to define such a unique constant as the constant of simultaneous linearisation of ψ with respect to φ and it is denoted as $c_{\varphi, \psi}$.*

Parabolic positive case IV

Theorem (Contreras, Gumenyuk, DM)

The previous simultaneous linearization is essentially unique in the following sense:

1. *If $(\beta_1, c_1), (\beta_2, c_2) \in \text{Hol}(\mathbb{H}, \mathbb{C}) \times \mathbb{C}$ are two pairs satisfying the previous three conditions, then $c_1 = c_2 \in \overline{\mathbb{H}}$. This allows to define such a unique constant as the constant of simultaneous linearisation of ψ with respect to φ and it is denoted as $c_{\varphi, \psi}$.*
2. *If $(\beta_1, c), (\beta_2, c) \in \text{Hol}(\mathbb{H}, \mathbb{C}) \times \mathbb{C}$ are two pairs satisfying the previous three conditions with $c \notin \mathbb{Q}$, then there exists $d \in \mathbb{C}$ such that*

$$\beta_1 = \beta_2 + d.$$

Parabolic positive case V

Theorem (Contreras, Gumenyuk, DM)

Let $\varphi \in \text{Hol}(\mathbb{D})$ be parabolic positive⁺ with Denjoy-Wolff point $\tau \in \partial\mathbb{D}$.

A function $\psi \in \text{Hol}(\mathbb{D})$ different from $\text{id}_{\mathbb{D}}$ commutes with φ if and only if the following two conditions hold:

1. The Denjoy-Wolff point of ψ is τ .
2. There exists a number $c \in \overline{\mathbb{H}}$ and $h = h(\psi) \in \text{Hol}(\mathbb{D}, \mathbb{C})$ univalent in some truncated Stolz angular region of vertex τ such that $h \circ \psi = h + c$ and $h \circ \varphi = h + 1$.

Theorem (Contreras, Gumenyuk, DM)

Let $\varphi \in \text{Hol}(\mathbb{D})$ be parabolic positive⁺ with Denjoy-Wolff point $\tau \in \partial\mathbb{D}$.

A function $\psi \in \text{Hol}(\mathbb{D})$ different from $\text{id}_{\mathbb{D}}$ commutes with φ if and only if the following two conditions hold:

1. The Denjoy-Wolff point of ψ is τ .
2. There exists a number $c \in \overline{\mathbb{H}}$ and $h = h(\psi) \in \text{Hol}(\mathbb{D}, \mathbb{C})$ univalent in some truncated Stolz angular region of vertex τ such that $h \circ \psi = h + c$ and $h \circ \varphi = h + 1$.

- In general, h is really different from h_φ . Indeed, either $h = h_\varphi + d$, for some $d \in \mathbb{C}$ or $h \neq T \circ h_\varphi$ for any lineal fractional map T .

Parabolic zero case VI

- The above number c is clearly unique and it is called **the constant of simultaneous linearisation of ψ with respect to φ** and it is denoted as $c_{\varphi, \psi}$.

- The above number c is clearly unique and it is called **the constant of simultaneous linearisation of ψ with respect to φ** and it is denoted as $c_{\varphi, \psi}$.
- There is no a simple formula for $c_{\varphi, \psi}$ as in the hyperbolic case.

The parabolic case: constant of simultaneous linearisation

Constant of simultaneous linearisation I

Constant of simultaneous linearisation I

Theorem (Contreras, Gumenyuk, DM)

Let $\varphi \in \text{Hol}(\mathbb{D})$ be parabolic and let $\psi \in \mathcal{Z}(\varphi)$.

1. $c_{\varphi, \psi} = 0$ if and only if $\psi = id_{\mathbb{D}}$.
2. If $c_{\varphi, \psi} = \frac{m}{n} \in \mathbb{Q}$ with $m, n \in \mathbb{N}$, then $\psi^{\circ(n)} = \varphi^{\circ(m)}$.
3. If $c_{\varphi, \psi} \in (-\infty, 0)$, then φ as well as ψ are parabolic automorphisms. Moreover, if $c_{\varphi, \psi} = -\frac{m}{n} \in \mathbb{Q}$ with $m, n \in \mathbb{N}$, then $\psi^{\circ(n)} = \varphi^{\circ(-m)}$.

Constant of simultaneous linearisation I

Theorem (Contreras, Gumenyuk, DM)

Let $\varphi \in \text{Hol}(\mathbb{D})$ be parabolic and let $\psi \in \mathcal{Z}(\varphi)$.

1. $c_{\varphi, \psi} = 0$ if and only if $\psi = id_{\mathbb{D}}$.
2. If $c_{\varphi, \psi} = \frac{m}{n} \in \mathbb{Q}$ with $m, n \in \mathbb{N}$, then $\psi^{o(n)} = \varphi^{o(m)}$.
3. If $c_{\varphi, \psi} \in (-\infty, 0)$, then φ as well as ψ are parabolic automorphisms. Moreover, if $c_{\varphi, \psi} = -\frac{m}{n} \in \mathbb{Q}$ with $m, n \in \mathbb{N}$, then $\psi^{o(n)} = \varphi^{o(-m)}$.

- From above, we can think of any $\psi \in \mathcal{Z}(\varphi)$ as a $c_{\varphi, \psi}$ -iterate of φ .

Constant of simultaneous linearisation II

Constant of simultaneous linearisation II

Theorem (Contreras, Gumenyuk, DM)

Let $\varphi \in \text{Hol}(\mathbb{D})$ be parabolic.

1. Assume $\psi_1, \psi_2 \in \mathcal{Z}(\varphi)$. Then

$$c_{\varphi, \psi_1 \circ \psi_2} = c_{\varphi, \psi_1} + c_{\varphi, \psi_2} = c_{\varphi, \psi_2 \circ \psi_1}.$$

[in general, $\psi_1 \circ \psi_2 \neq \psi_2 \circ \psi_1$].

2. Assume $\psi \in \mathcal{Z}(\varphi)$ is different from $\text{id}_{\mathbb{D}}$. Then

$$c_{\psi, \varphi} c_{\varphi, \psi} = 1.$$

Constant of simultaneous linearisation III

Constant of simultaneous linearisation III

Theorem (Contreras, Gumenyuk, DM)

Let $\varphi \in \text{Hol}(\mathbb{D})$ be parabolic with Koenigs function h_φ and Denjoy-Wolff point $\tau \in \partial\mathbb{D}$. Let $\psi \in \mathcal{Z}(\varphi)$. Then,

$$c_{\varphi, \psi} = \angle \lim_{z \rightarrow \tau} (h_\varphi \circ \psi(z) - h_\varphi(z)) = \angle \lim_{z \rightarrow \tau} h'_\varphi(z)(\psi(z) - z).$$

Constant of simultaneous linearisation IV

Theorem (Contreras, Gumenyuk, DM)

Let $\varphi \in \text{Hol}(\mathbb{D})$ be parabolic with Denjoy-Wolff point $\tau \in \partial\mathbb{D}$ and let $\psi \in \mathcal{Z}(\varphi)$. Then

$$c_{\varphi, \psi} = \angle \lim_{z \rightarrow \tau} \frac{\psi(z) - z}{\varphi(z) - z}.$$

Constant of simultaneous linearisation V

Theorem (Contreras, Gumenyuk, DM)

Let $\varphi \in \text{Hol}(\mathbb{D})$ be non-elliptic with Denjoy-Wolff point $\tau \in \partial\mathbb{D}$ and let $\psi \in \mathcal{Z}(\varphi)$. Then

$$c_{\varphi, \psi} = \lim_{r \rightarrow 1^-} \frac{\log(\psi'(r\tau))}{\log(\varphi'(r\tau))}.$$

Abelian character of the centralizer

Abelian character I

Abelian character I

- $[\mathcal{Z}(\varphi), \circ]$ is a semigroup, for every non-elliptic $\varphi \in \text{Hol}(\mathbb{D})$.

Abelian character I

- $[\mathcal{Z}(\varphi), \circ]$ is a semigroup, for every non-elliptic $\varphi \in \text{Hol}(\mathbb{D})$.
- Is $[\mathcal{Z}(\varphi), \circ]$ abelian?

Abelian character I

- $[\mathcal{Z}(\varphi), \circ]$ is a semigroup, for every non-elliptic $\varphi \in \text{Hol}(\mathbb{D})$.
- Is $[\mathcal{Z}(\varphi), \circ]$ abelian?

Theorem (Cowen)

If φ is hyperbolic, then $[\mathcal{Z}(\varphi), \circ]$ is abelian.

Abelian character I

- $[\mathcal{Z}(\varphi), \circ]$ is a semigroup, for every non-elliptic $\varphi \in \text{Hol}(\mathbb{D})$.
- Is $[\mathcal{Z}(\varphi), \circ]$ abelian?

Theorem (Cowen)

If φ is hyperbolic, then $[\mathcal{Z}(\varphi), \circ]$ is abelian.

Theorem (Contreras, Gumenyuk, DM)

If φ is parabolic of zero hyperbolic step, then $[\mathcal{Z}(\varphi), \circ]$ is abelian.

Abelian character I

- $[\mathcal{Z}(\varphi), \circ]$ is a semigroup, for every non-elliptic $\varphi \in \text{Hol}(\mathbb{D})$.
- Is $[\mathcal{Z}(\varphi), \circ]$ abelian?

Theorem (Cowen)

If φ is hyperbolic, then $[\mathcal{Z}(\varphi), \circ]$ is abelian.

Theorem (Contreras, Gumenyuk, DM)

If φ is parabolic of zero hyperbolic step, then $[\mathcal{Z}(\varphi), \circ]$ is abelian.

- It was known from the work of Heins that, in general, $[\mathcal{Z}(\varphi), \circ]$ is not abelian, when φ is parabolic of positive hyperbolic step.
However:

Abelian character I

- $[\mathcal{Z}(\varphi), \circ]$ is a semigroup, for every non-elliptic $\varphi \in \text{Hol}(\mathbb{D})$.
- Is $[\mathcal{Z}(\varphi), \circ]$ abelian?

Theorem (Cowen)

If φ is hyperbolic, then $[\mathcal{Z}(\varphi), \circ]$ is abelian.

Theorem (Contreras, Gumenyuk, DM)

If φ is parabolic of zero hyperbolic step, then $[\mathcal{Z}(\varphi), \circ]$ is abelian.

- It was known from the work of Heins that, in general, $[\mathcal{Z}(\varphi), \circ]$ is not abelian, when φ is parabolic of positive hyperbolic step.
However:

Theorem (Contreras, Gumenyuk, DM)

If φ is parabolic of positive hyperbolic step, $\psi \in \mathcal{Z}(\varphi)$ and $c_{\varphi, \psi} \notin \mathbb{R}$ then

$$\{\phi \in \mathcal{Z}(\varphi) : \psi \circ \phi = \phi \circ \psi\}$$

is an abelian subsemigroup of $\mathcal{Z}(\varphi)$.

THANK YOU FOR YOUR ATTENTION

¡¡ FELIZ CUMPLEAÑOS, PEPE !!