Commutativity in non-elliptic iteration

Santiago Diaz-Madrigal

Departamento de Matematica Aplicada Il

Universidad de Sevilla

(based on joint works with M.D. Contreras [Universidad de Sevilla]
and P. Gumenyuk [Politecnico di Milano])

INTERNATIONAL WORKSHOP ON FUNCTIONAL ANALYSIS

ON THE OCCASION OF THE 70TH BIRTHDAY OF JOSE BONET
Valencia, June 16th 2025-June 19th 2025



Table of contents

1. Commutativity and canonical models

2. The hyperbolic case

3. The parabolic zero case

4. The parabolic positive case

5. The parabolic case: constant of simultaneous linearisation

6. Abelian character of the centralizer



Commutativity and canonical
models



Commutativity |



Commutativity |

= Centralizer of a function ¢ € Hol(D):

Z(¢) :={¢ € Hol(D) : o p = p oy}



Commutativity |

= Centralizer of a function ¢ € Hol(D):

Z(¢) :={¢ € Hol(D) : o p = p oy}

= Direct analysis: description of the centralizer [in general, completely
unfeasible and usually not very useful].



Commutativity |

= Centralizer of a function ¢ € Hol(D):

Z(¢) :={¢ € Hol(D) : o p = p oy}

= Direct analysis: description of the centralizer [in general, completely
unfeasible and usually not very useful].

= |ndirect analysis: consider a qualitative approach to the centralizers.
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= In this talk, we will follow the second option using the so-called
canonical models; often mentioned as the dynamical approach.

= This approach has a long story. At least, we must cite: Heins
(1941), Pranger (1970), Shields (1964), Behan (1973), Cowen
(1984), Gentili-Vlacci (1994), Bisi-Gentili (2001).

= Cowen'’s paper has been fundamental in the current development of
the theory.
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= In what follows, we assume that ¢ € Hol(D) has no fixed point, that
is, ©(z) # z, for all z € D. In other words, we assume that ¢ is
non-elliptic.

= If ¢ € Hol(ID) is non-elliptic, there exists 7 € D such that, for every
z €D, lim,_ o0 pn(z) = 7. This point 7 is (clearly) unique and it is
called the Denjoy-Wolff point of (.
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= Let ¢ € Hol(ID) be non-elliptic with Denjoy-Wolf point 7 € ID.
= Koenigs function (informally): h € Hol(ID, C) such that

hoo(z)=h(z)+1, zeD,

and h is univalent in a certain “nice domain close to 7"

= It is always possible to find such a Koenigs function and, indeed,
with the following property:

is either a horizontal strip, a horizontal half-plane or C. This subset
Q is called the base domain and the triple (2, h,z+— z+1) a
canonical model of ¢.

= Canonical models always exist and they are essentially unique.
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= Dynamically speaking, a canonical model tell us that the iterates
system

neN— pp(z), zeD // neN—w+n, we h(D)

are equivalent.

= In other words, the dynamical information about (¢,) is basically
encoded in the geometry of h(D).
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= A “simple” remark:

= Assume ¢ is univalent with Koenigs function h.

= Take ¢ € C such that h,(D) + ¢ C h, (D).

= Define ¢(z) := h*(h,(2) + c) [hy is also univalent].
= Clearly, for every z € D,

Pop(z) = hy'(hy(2) + 1+ c) = h;'(ho(2) + c + 1) = p o 9h(2),

thus ¢ € Z(p).
= Note h, 01 = h, 4+ c and h, o ¢ = h, + 1.
= Central question: until what point this “simple geometrical”
procedure is the “unique” way to generate elements of Z(y)?
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= Hyperbolic: the base domain is a horizontal strip.

= Parabolic positive: the base domain is the upper half-plane H
(positive ") or the lower half-plane —H (positive ).

= Parabolic zero: the base domain is C.
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Theorem (Heins)

Let ¢ € Hol(ID) be a hyperbolic automorphism and let h, be the Koenigs
function of . A function ¢ € Hol(D) different from idp commutes with
@ if and only if there exists a number c € R such that h, o ¢ = h, + c.
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Theorem (Cowen;Behan,Gentili,Vlacci, Bisi)
Let ¢ € Hol(D) be hyperbolic, different from an automorphism, with

Denjoy-Wolff point 7 € O and let h, be the Koenigs function of p. A
function v € Hol(ID) different from idp commutes with ¢ if and only if
the following two conditions hold:

1. The Denjoy-Wolff point of ¢ is T.

2. There exists a number ¢ € R such that h, o1 = h, + c.
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Theorem (Cowen;Behan,Gentili,Vlacci, Bisi)
Let ¢ € Hol(D) be hyperbolic, different from an automorphism, with

Denjoy-Wolff point 7 € O and let h, be the Koenigs function of p. A
function v € Hol(ID) different from idp commutes with ¢ if and only if
the following two conditions hold:

1. The Denjoy-Wolff point of ¢ is T.
2. There exists a number ¢ € R such that h, o1 = h, + c.

Moreover, if hy is univalent, then a function 1 € Hol(ID) different from
idp commutes with ¢ if and only there exists a number ¢ € R such that
hyo = h, + c.

10
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= The previous number c is clearly unique and it is called the constant
of simultaneous linearisation of 1) with respect to ¢ and it is denoted

as Cyqp-
= Indeed, if ¥ € Z(p),

__ log(y/(r)
#~ Tog(/(7)’
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Theorem (Contreras,Gumenyuk,DM)
Let ¢ € Hol(ID) be parabolic zero with Denjoy-Wolff point T € 0D and let

h, be the Koenigs function of ¢. A function ¢ € Hol(D) different from
idp commutes with ¢ if and only if if the following two conditions hold:

1. The Denjoy-Wolff point of v is .

2. There exists a number ¢ € C such that h, o1 = h, + c.
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Theorem (Contreras,Gumenyuk,DM)
Let ¢ € Hol(ID) be parabolic zero with Denjoy-Wolff point T € 0D and let

h, be the Koenigs function of ¢. A function ¢ € Hol(D) different from
idp commutes with ¢ if and only if if the following two conditions hold:
1. The Denjoy-Wolff point of v is .
2. There exists a number ¢ € C such that h, o1 = h, + c.
Moreover, if h, is univalent, then a function 1 € Hol(D) different from

idp commutes with ¢ if and only there exists a number ¢ € C such that
hw oY = hcp +c.

12
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= The above number c is clearly unique and it is called the constant of
simultaneous linearisation of ¢ with respect to ¢ and it is denoted
as Cyp -

= There is no a simple formula for ¢, 4 as in the hyperbolic case.
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Theorem (Heins)

Let ¢ € Hol(H) be a parabolic automorphism (positive®) and let h, be
the Koenigs function of ¢. A function ) € Hol(H) commutes with ¢ if
and only if one of the mutually disjoint situations happens:

1. There exists a number ¢ € R such that

¥ = hto(h, +c).

2. There exists F € Hol(D, H) such that

P(w) = h;t o (hy(w) + F(e2+"))), w € H.
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Theorem (Heins)

Let ¢ € Hol(H) be a parabolic automorphism (positive®) and let h, be
the Koenigs function of ¢. A function ) € Hol(H) commutes with ¢ if
and only if one of the mutually disjoint situations happens:

1. There exists a number ¢ € R such that

¥ = hto(h, +c).

2. There exists F € Hol(D, H) such that

P(w) = h;t o (hy(w) + F(e2+"))), w € H.

= Our central question has a negative answer in this context.

14
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= Central question reformulated: In the parabolic positive case, is
there any kind of simultaneously linearization result for two
commuting elements?

= For the sake of clarity, we will restrict to the case of parabolic
positive™ thus with a canonical model with base domain H.

15
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Theorem (Contreras,Gumenyuk,DM)
Let ¢ € Hol(D) be parabolic positive™ with Koenigs function h,, and let

Y € Z(p). Then, there exist 5 € Hol(H, C) and a number c € C such
that the following three conditions hold:

1. B(w+1)=p(w)+1, for all w € H.

2. foh,op=poh,+1

3. Bohyot)=Poh,+c.

16
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Theorem (Contreras,Gumenyuk,DM)
The previous simultaneous linearization is essentially unique in the

following sense:

1. If (81, c1), (B2, c2) € Hol(H, C) x C are two pairs satisfying the
previous three conditions, then ¢c; = ¢, € H.. This allows to define
such a unique constant as the constant of simultaneous linearisation
of ¢ with respect to ¢ and it is denoted as c y.

2. If (B1,¢), (B2, c) € Hol(H, C) x C are two pairs satisfying the
previous three conditions with ¢ ¢ Q, then there exists d € C such

that
B1 =B +d.

17
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Theorem (Contreras,Gumenyuk,DM)
Let ¢ € Hol(D) be parabolic positive™ with Denjoy-Wolff point T € dD.

A function 1 € Hol(D) different from idp commutes with ¢ if and only if
the following two conditions hold:

1. The Denjoy-Wolff point of 1 is T.

2. There exists a number ¢ € H and h = h(v)) € Hol(D, C) univalent in
some truncated Stolz angular region of vertex T such that
hov=h+cand hop=nh+1.
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Theorem (Contreras,Gumenyuk,DM)
Let ¢ € Hol(D) be parabolic positive™ with Denjoy-Wolff point T € dD.

A function 1 € Hol(D) different from idp commutes with ¢ if and only if
the following two conditions hold:

1. The Denjoy-Wolff point of 1 is T.

2. There exists a number ¢ € H and h = h(v)) € Hol(D, C) univalent in
some truncated Stolz angular region of vertex T such that
hov=h+cand hop=nh+1.

= In general, his really different from h,. Indeed, either h = h, + d,
for some d € C or h# T o hy, for any lineal fractional map T.

18
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= The above number c is clearly unique and it is called the constant of
simultaneous linearisation of ¢ with respect to ¢ and it is denoted
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= There is no a simple formula for ¢, 4 as in the hyperbolic case.
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Theorem (Contreras,Gumenyuk,DM)
Let ¢ € Hol(D) be parabolic and let 1) € Z(¢p).

1. ¢, =0 if and only if ¢ = idp.
2. IfC‘Pa"/} = % € Wlth m, n & N, then wo(n) = (po(m).

3. If ¢y € (—00,0), then ¢ as well as ¢ are parabolic automorphisms.
Moreover, if ¢,y = —*7 € Q with m,n € N, then o) = po(=m),

20



Constant of simultaneous linearisation |

Theorem (Contreras,Gumenyuk,DM)
Let ¢ € Hol(D) be parabolic and let 1) € Z(¢p).

1. cop =0 if and only if 1 = idp.

2. Ifcy,y =2 € withm,n €N, then o) = polm),

3. If ¢y € (—00,0), then ¢ as well as ¢ are parabolic automorphisms.
Moreover, if ¢,y = —*7 € Q with m,n € N, then o) = pol=m),

= From above, we can think of any ¥ € Z(¢) as a ¢, y-iterate of .

20
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Theorem (Contreras,Gumenyuk,DM)
Let ¢ € Hol(D) be parabolic.

1. Assume 1,12 € Z(p). Then

Copron = Con T Copy = Coaproy -

[in general, 11 0 1by # 1y 0 91 ].
2. Assume i € Z(yp) is different from idp. Then

Cy,pCop = 1.

21
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Theorem (Contreras,Gumenyuk,DM)
Let ¢ € Hol(ID) be parabolic with Koenigs function h, and Denjoy-Wolff

point T € OD. Let i) € Z(p). Then,

o = £ lim (hy 0 0(2) — ho(2)) = £ lim K (2)(¥(2) - 2).

Z—T

22
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Constant of simultaneous linearisation 1V

Theorem (Contreras,Gumenyuk,DM)

Let ¢ € Hol(D) be parabolic with Denjoy-Wolff point T € 0D and let

Y € Z(p). Then

Cop = Z lim d)(Z) — Z.
z—T SO(Z — Z

23
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Theorem (Contreras,Gumenyuk,DM)
Let ¢ € Hol(D) be non-elliptic with Denjoy-Wolff point 7 € 0D and let

€ Z(p). Then

24



Abelian character of the
centralizer




Abelian character |

25



Abelian character |

= [Z(¢),0] is a semigroup, for every non-elliptic ¢ € Hol(DD).

25



Abelian character |

= [Z(¢),0] is a semigroup, for every non-elliptic ¢ € Hol(DD).
= Is [Z(p), o] abelian?

25



Abelian character |

= [Z(p),0] is a semigroup, for every non-elliptic ¢ € Hol(DD).
= Is [Z(p), o] abelian?

Theorem (Cowen)
If © is hyperbolic, then [Z(p), o] is abelian.

25



Abelian character |

= [Z(p),0] is a semigroup, for every non-elliptic ¢ € Hol(DD).
= Is [Z(p), o] abelian?

Theorem (Cowen)
If © is hyperbolic, then [Z(p), o] is abelian.

Theorem (Contreras,Gumenyuk,DM
If  is parabolic of zero hyperbolic step, then [Z(p), o] is abelian.

25



Abelian character |

= [Z(p),0] is a semigroup, for every non-elliptic ¢ € Hol(DD).
= Is [Z(p), o] abelian?

Theorem (Cowen)
If © is hyperbolic, then [Z(p), o] is abelian.

Theorem (Contreras,Gumenyuk,DM
If  is parabolic of zero hyperbolic step, then [Z(p), o] is abelian.

= It was known from the work of Heins that, in general, [Z(p), o] is

not abelian, when ¢ is parabolic of positive hyperbolic step.
However:

25



Abelian character |

= [Z(p),0] is a semigroup, for every non-elliptic ¢ € Hol(DD).
= Is [Z(p), o] abelian?

Theorem (Cowen)
If © is hyperbolic, then [Z(p), o] is abelian.

Theorem (Contreras,Gumenyuk,DM)
If  is parabolic of zero hyperbolic step, then [Z(p), o] is abelian.

= It was known from the work of Heins that, in general, [Z(p), o] is
not abelian, when ¢ is parabolic of positive hyperbolic step.
However:

Theorem (Contreras,Gumenyuk,DM)
If ¢ is parabolic of positive hyperbolic step, 1) € Z(p) and c, ., ¢ R then

{pcZ(p):pop=0doy}
is an abelian subsemigroup of Z(¢).
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ii FELIZ CUMPLEANOS, PEPE !!
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