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Commutativity and canonical
models



Commutativity I

• Centralizer of a function φ ∈ Hol(D):

Z(φ) := {ψ ∈ Hol(D) : ψ ◦ φ = φ ◦ ψ}.

• Direct analysis: description of the centralizer [in general, completely
unfeasible and usually not very useful].

• Indirect analysis: consider a qualitative approach to the centralizers.
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Commutativity II

• In this talk, we will follow the second option using the so-called
canonical models; often mentioned as the dynamical approach.

• This approach has a long story. At least, we must cite: Heins
(1941), Pranger (1970), Shields (1964), Behan (1973), Cowen
(1984), Gentili-Vlacci (1994), Bisi-Gentili (2001).

• Cowen’s paper has been fundamental in the current development of
the theory.
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Commutativity III

• In what follows, we assume that φ ∈ Hol(D) has no fixed point, that
is, φ(z) ̸= z , for all z ∈ D. In other words, we assume that φ is
non-elliptic.

• If φ ∈ Hol(D) is non-elliptic, there exists τ ∈ ∂D such that, for every
z ∈ D, limn→∞ φn(z) = τ. This point τ is (clearly) unique and it is
called the Denjoy-Wolff point of φ.
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Commutativity IV

• Let φ ∈ Hol(D) be non-elliptic with Denjoy-Wolf point τ ∈ ∂D.
• Koenigs function (informally): h ∈ Hol(D,C) such that

h ◦ φ(z) = h(z) + 1, z ∈ D,

and h is univalent in a certain “nice domain close to τ”.
• It is always possible to find such a Koenigs function and, indeed,

with the following property:

Ω :=
∞⋃

n=0
(h(D) − n)

is either a horizontal strip, a horizontal half-plane or C. This subset
Ω is called the base domain and the triple (Ω, h, z 7→ z + 1) a
canonical model of φ.

• Canonical models always exist and they are essentially unique.
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Commutativity V

• Dynamically speaking, a canonical model tell us that the iterates
system

n ∈ N 7→ φn(z), z ∈ D // n ∈ N 7→ w + n, w ∈ h(D)

are equivalent.
• In other words, the dynamical information about (φn) is basically

encoded in the geometry of h(D).
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Commutativity VI

• A “simple” remark:
• Assume φ is univalent with Koenigs function hφ.
• Take c ∈ C such that hφ(D) + c ⊂ hφ(D).
• Define ψ(z) := h−1

φ (hφ(z) + c) [hφ is also univalent].
• Clearly, for every z ∈ D,

ψ ◦ φ(z) = h−1
φ (hφ(z) + 1 + c) = h−1

φ (hφ(z) + c + 1) = φ ◦ ψ(z),

thus ψ ∈ Z(φ).
• Note hφ ◦ ψ = hφ + c and hφ ◦ φ = hφ + 1.

• Central question: until what point this “simple geometrical”
procedure is the “unique” way to generate elements of Z(φ)?
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Commutativity VII

• Hyperbolic: the base domain is a horizontal strip.

• Parabolic positive: the base domain is the upper half-plane H
(positive+) or the lower half-plane −H (positive−).

• Parabolic zero: the base domain is C.
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The hyperbolic case



Hyperbolic case I

Theorem (Heins)
Let φ ∈ Hol(D) be a hyperbolic automorphism and let hφ be the Koenigs
function of φ. A function ψ ∈ Hol(D) different from idD commutes with
φ if and only if there exists a number c ∈ R such that hφ ◦ ψ = hφ + c.
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Hyperbolic case II

Theorem (Cowen;Behan,Gentili,Vlacci,Bisi)
Let φ ∈ Hol(D) be hyperbolic, different from an automorphism, with
Denjoy-Wolff point τ ∈ ∂D and let hφ be the Koenigs function of φ. A
function ψ ∈ Hol(D) different from idD commutes with φ if and only if
the following two conditions hold:

1. The Denjoy-Wolff point of ψ is τ .
2. There exists a number c ∈ R such that hφ ◦ ψ = hφ + c.

Moreover, if hφ is univalent, then a function ψ ∈ Hol(D) different from
idD commutes with φ if and only there exists a number c ∈ R such that
hφ ◦ ψ = hφ + c.
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Hyperbolic case III

• The previous number c is clearly unique and it is called the constant
of simultaneous linearisation of ψ with respect to φ and it is denoted
as cφ,ψ.

• Indeed, if ψ ∈ Z(φ),

cφ,ψ = log(ψ′(τ))
log(φ′(τ)) .
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The parabolic zero case



Parabolic zero case I

Theorem (Contreras,Gumenyuk,DM)
Let φ ∈ Hol(D) be parabolic zero with Denjoy-Wolff point τ ∈ ∂D and let
hφ be the Koenigs function of φ. A function ψ ∈ Hol(D) different from
idD commutes with φ if and only if if the following two conditions hold:

1. The Denjoy-Wolff point of ψ is τ .
2. There exists a number c ∈ C such that hφ ◦ ψ = hφ + c.

Moreover, if hφ is univalent, then a function ψ ∈ Hol(D) different from
idD commutes with φ if and only there exists a number c ∈ C such that
hφ ◦ ψ = hφ + c.
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Parabolic zero case II

• The above number c is clearly unique and it is called the constant of
simultaneous linearisation of ψ with respect to φ and it is denoted
as cφ,ψ.

• There is no a simple formula for cφ,ψ as in the hyperbolic case.
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The parabolic positive case



Parabolic positive case I

Theorem (Heins)
Let φ ∈ Hol(H) be a parabolic automorphism (positive+) and let hφ be
the Koenigs function of φ. A function ψ ∈ Hol(H) commutes with φ if
and only if one of the mutually disjoint situations happens:

1. There exists a number c ∈ R such that

ψ = h−1
φ ◦ (hφ + c).

2. There exists F ∈ Hol(D,H) such that

ψ(w) = h−1
φ ◦ (hφ(w) + F (e2πihφ(w))), w ∈ H.

• Our central question has a negative answer in this context.
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Parabolic positive case II

• Central question reformulated: In the parabolic positive case, is
there any kind of simultaneously linearization result for two
commuting elements?

• For the sake of clarity, we will restrict to the case of parabolic
positive+ thus with a canonical model with base domain H.
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Parabolic positive case III

Theorem (Contreras,Gumenyuk,DM)
Let φ ∈ Hol(D) be parabolic positive+ with Koenigs function hφ and let
ψ ∈ Z(φ). Then, there exist β ∈ Hol(H,C) and a number c ∈ C such
that the following three conditions hold:

1. β(w + 1) = β(w) + 1, for all w ∈ H.
2. β ◦ hφ ◦ φ = β ◦ hφ + 1.
3. β ◦ hφ ◦ ψ = β ◦ hφ + c.
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Parabolic positive case IV

Theorem (Contreras,Gumenyuk,DM)
The previous simultaneous linearization is essentially unique in the
following sense:

1. If (β1, c1), (β2, c2) ∈ Hol(H,C) × C are two pairs satisfying the
previous three conditions, then c1 = c2 ∈ H. This allows to define
such a unique constant as the constant of simultaneous linearisation
of ψ with respect to φ and it is denoted as cφ,ψ.

2. If (β1, c), (β2, c) ∈ Hol(H,C) × C are two pairs satisfying the
previous three conditions with c /∈ Q, then there exists d ∈ C such
that

β1 = β2 + d .

17
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Parabolic positive case V

Theorem (Contreras,Gumenyuk,DM)
Let φ ∈ Hol(D) be parabolic positive+ with Denjoy-Wolff point τ ∈ ∂D.
A function ψ ∈ Hol(D) different from idD commutes with φ if and only if
the following two conditions hold:

1. The Denjoy-Wolff point of ψ is τ .
2. There exists a number c ∈ H and h = h(ψ) ∈ Hol(D,C) univalent in

some truncated Stolz angular region of vertex τ such that
h ◦ ψ = h + c and h ◦ φ = h + 1.

• In general, h is really different from hφ. Indeed, either h = hφ + d ,
for some d ∈ C or h ̸= T ◦ hφ for any lineal fractional map T .

.
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Parabolic zero case VI

• The above number c is clearly unique and it is called the constant of
simultaneous linearisation of ψ with respect to φ and it is denoted
as cφ,ψ.

• There is no a simple formula for cφ,ψ as in the hyperbolic case.
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The parabolic case: constant of
simultaneous linearisation



Constant of simultaneous linearisation I

Theorem (Contreras,Gumenyuk,DM)
Let φ ∈ Hol(D) be parabolic and let ψ ∈ Z(φ).

1. cφ,ψ = 0 if and only if ψ = idD.
2. If cφ,ψ = m

n ∈ with m, n ∈ N, then ψo(n) = φo(m).
3. If cφ,ψ ∈ (−∞, 0), then φ as well as ψ are parabolic automorphisms.

Moreover, if cφ,ψ = − m
n ∈ Q with m, n ∈ N, then ψo(n) = φo(−m).

• From above, we can think of any ψ ∈ Z(φ) as a cφ,ψ-iterate of φ.

.
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Constant of simultaneous linearisation II

Theorem (Contreras,Gumenyuk,DM)
Let φ ∈ Hol(D) be parabolic.

1. Assume ψ1, ψ2 ∈ Z(φ). Then

cφ,ψ1◦ψ2 = cφ,ψ1 + cφ,ψ2 = cφ,ψ2◦ψ1 .

[in general, ψ1 ◦ ψ2 ̸= ψ2 ◦ ψ1].
2. Assume ψ ∈ Z(φ) is different from idD. Then

cψ,φcφ,ψ = 1.
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Constant of simultaneous linearisation III

Theorem (Contreras,Gumenyuk,DM)
Let φ ∈ Hol(D) be parabolic with Koenigs function hφ and Denjoy-Wolff
point τ ∈ ∂D. Let ψ ∈ Z(φ). Then,

cφ,ψ = ∠ lim
z→τ

(hφ ◦ ψ(z) − hφ(z)) = ∠ lim
z→τ

h′
φ(z)(ψ(z) − z).
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Constant of simultaneous linearisation IV

Theorem (Contreras,Gumenyuk,DM)
Let φ ∈ Hol(D) be parabolic with Denjoy-Wolff point τ ∈ ∂D and let
ψ ∈ Z(φ). Then

cφ,ψ = ∠ lim
z→τ

ψ(z) − z
φ(z) − z .
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Constant of simultaneous linearisation IV

Theorem (Contreras,Gumenyuk,DM)
Let φ ∈ Hol(D) be parabolic with Denjoy-Wolff point τ ∈ ∂D and let
ψ ∈ Z(φ). Then

cφ,ψ = ∠ lim
z→τ

ψ(z) − z
φ(z) − z .
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Constant of simultaneous linearisation V

Theorem (Contreras,Gumenyuk,DM)
Let φ ∈ Hol(D) be non-elliptic with Denjoy-Wolff point τ ∈ ∂D and let
ψ ∈ Z(φ). Then

cφ,ψ = lim
r→1−

log(ψ′(rτ))
log(φ′(rτ)) .
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Constant of simultaneous linearisation V

Theorem (Contreras,Gumenyuk,DM)
Let φ ∈ Hol(D) be non-elliptic with Denjoy-Wolff point τ ∈ ∂D and let
ψ ∈ Z(φ). Then

cφ,ψ = lim
r→1−

log(ψ′(rτ))
log(φ′(rτ)) .
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Abelian character of the
centralizer



Abelian character I

• [Z(φ), ◦] is a semigroup, for every non-elliptic φ ∈ Hol(D).
• Is [Z(φ), ◦] abelian?

Theorem (Cowen)
If φ is hyperbolic, then [Z(φ), ◦] is abelian.

Theorem (Contreras,Gumenyuk,DM)
If φ is parabolic of zero hyperbolic step, then [Z(φ), ◦] is abelian.

• It was known from the work of Heins that, in general, [Z(φ), ◦] is
not abelian, when φ is parabolic of positive hyperbolic step.
However:

Theorem (Contreras,Gumenyuk,DM)
If φ is parabolic of positive hyperbolic step, ψ ∈ Z(φ) and cφ,ψ /∈ R then

{ϕ ∈ Z(φ) : ψ ◦ ϕ = ϕ ◦ ψ}

is an abelian subsemigroup of Z(φ).
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¡¡ FELIZ CUMPLEAÑOS, PEPE !!
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