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The Schwarz Reflection Principle

Theorem

Let h be a holomorphic function on the upper halfplane which extends
continuously to a real-valued function on the real line. Then there is an
entire function F such that F = f on the closed upper plane.
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Another point of view

h : R → R is a continuous map of the real hypersurface R ⊆ C into
itself.

The reflection principle is a regularity result for the map h:
If h extends holomorphically to one side then h is in fact real-analytic.

▶ There is a microlocal interpretation: If u ∈ D′(R) then by definition

(x ,−1) /∈ WFA u ⇐⇒ (x ,+1) /∈ WFA ū ∀x ∈ R.
The assumptions of the Schwarz reflection principle are: u = ū and
(x ,−1) /∈ WFA u. Hence WFA u = ∅.

Question: Are there similar regularity results in higher dimensions?

Theorem (Fefferman 1974)

Let D ⊆ CN and D ′ ⊆ CN be two bounded strongly pseudoconvex
domains with smooth boundaries. Then every biholomorphic mapping
between D and D ′ extends to a smooth diffeomorphism of the boundaries.
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Introduction: Real Submanifolds of CN

Let J be the complex structure operator on CN :

J(Z ) = Z Z ∈ CN .

If M is a real submanifold of CN with tangent space TpM ⊆ CN at p ∈ M
then

T c
pM = TpM ∩ J(TpM)

is the complex tangent space of M at p.

M ⊆ CN is CR :⇐⇒ M ∋ p 7→ dimC T c
pM is constant.

dimC T c
pM is the CR dimension of M.

Lemma

If M ⊆ Cn+1 is a real hypersurface then M is a CR manifold of CR
dimension n.
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CR vector fields

If CTpCN = C⊗ TpCN ∼= C2N then
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where j = 1, . . . ,N, is a basis.

Let T
(0,1)
p = span{∂Z1

, . . . , ∂ZN
} ⊆ CTpCN and denote by T (0,1) the

associated bundle.

Definition

If M is a CR manifold then

V = CTpM ∩ T (0,1)

is the CR bundle of M (note that ReV = T cM).

A CR vector field of M is a section L of V over M.
We write L ∈ V.
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Stefan Fürdös (Vienna) Regularity of CR mappings 5 / 29



CR functions and CR mappings

Definition

A function (distribution) f on a CR manifold M is a CR function if
Lf = 0 for all CR vector fields L of M.

Let M ⊆ CN and M ′ ⊆ CN′
and h : M → M ′ a mapping. Then h is a

CR mapping if

h∗ (Vp) ⊆ Vh(p), ∀ p ∈ M.

Remark

If M is a real hypersurface and F a holomorphic function on one side
of M which extends continuously to M then F |M is a CR function.

If h = (h1, . . . , hN′) : M → M ′ is a CR mapping
then hj is a CR function on M for all j = 1, . . . ,N ′.
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Remark

Let h : M → M ′ be a CR mapping with n = dimCR M and p ∈ M.
Suppose that there is a basis of CR vector fields L1, . . . , Ln defined near p
and let ρ′ be a local defining function of M ′ near h(p).

Then the question of the regularity of the CR map h near p can be
formulated as a regularity problem for the following overdetermined system
of PDEs with nonlinear side conditions:

(⋆) =

{
Ljhk(q) = 0, j = 1, . . . ,N, k = 1, . . . ,N ′,

ρ′(h(q)) = 0 q near p.

Problem

If the data of (⋆) (i.e. L1, . . . , Ln, ρ
′) is C∞ (Cω, etc.), under which

conditions is the solution h of (⋆) C∞ (Cω, etc.)?
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Further definitions

Let M ⊆ Cn+1 and M ′ ⊆ Cn′+1 be real hypersurfaces and
h : M → M ′ be a CR mapping defined near p0 ∈ M.

Assume that L1, . . . , Ln is a local basis of CR vector fields near a
point p0 and ρ′ a local defining function of M ′ near q0 ∈ H(p0).

If Z ′ = (Z1, . . . ,Z
′
n′+1) denote the coordinates of Cn′+1 then we write

∂ρ′/∂Z ′ = (∂ρ′/∂Z ′
1, . . . , ∂ρ

′/∂Zn′+1). If h is of class Ck then we set

Ek(p0) = span

Lα
(
∂ρ

∂Z ′ (h(Z ))

) ∣∣∣∣∣
Z=p0

: α ∈ Nn
0, |α| ≤ k

.
Here Lα = Lα1

1 . . . Lαn
n .

Obviously, Ek(p0) ⊆ Ek+1(p0) when h is of class Ck+1.
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Finitely nondegenerate CR mappings

Definition

The CR mapping h is k0-nondegenerate at p0 if h is of class Ck0 near p0
and Ek0−1(p0) ⊊ Ek0(p0) = Cn′+1.

Theorem (Lamel 2001/04)

Let M ⊆ Cn+1, M ′ ⊆ Cn′+1 be real hypersurfaces and k0 ∈ N.
Suppose that h : M → M ′ is a CR mapping which is k0-nondegenerate at
p0 ∈ M and which extends continuously to a holomorphic mapping on one
side of M.
If M and M ′ are smooth (real-analytic) then h is smooth (real-analytic)
near p.
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Main Ingrediants of the proof

Using suitable charts of M and extends them in an almost-analytic
way to a diffeomorphism.

Fourier transforms.

⇝ microlocal analysis.

Problem

Let A be an ultradifferentiable class, i.e. Cω⊆A⊆C∞=E .
(e.g. Gevrey classes Gs , s ≥ 1.)
If M,M ′ are A-manifolds, is H of class A?

What conditions should A satisfy?

A has to be closed under composition and satisfying the implicit
function theorem.

A has to be microlocalizable, i.e. for a distribution u the A-wavefront
set WFA u can be defined.

The algebra A can be characterized by almost-analytic extensions.
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Classes given by weight matrices

We say that a squence M = (Mk)k of positive numbers is a weight
sequence if M0 = 1 and M2

k ≤ Mk−1Mk+1 for all k ∈ N.

A weight matrix M is a family of weight matrices such that for any
pair M,N ∈ M we have either Mk ≤ Nk , ∀k , or Mk ≤ Nk , ∀k .

Let f ∈ C∞(Ω) and M be a weight matrix.
Then f ∈ E{M}(Ω) iff

∀K ⋐ Ω ∃M ∈ M ∃C , h > 0 :

sup
x∈K

|Dαf (x)| ≤ Ch|α|M|α| ∀α ∈ Nn
0.

These classes include (Rainer–Schindl 2016)

Denjoy-Carleman classes given by single weight sequences.

Braun-Meise-Taylor classes given by weight functions.
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Stefan Fürdös (Vienna) Regularity of CR mappings 11 / 29



Classes given by weight matrices

We say that a squence M = (Mk)k of positive numbers is a weight
sequence if M0 = 1 and M2

k ≤ Mk−1Mk+1 for all k ∈ N.
A weight matrix M is a family of weight matrices such that for any
pair M,N ∈ M we have either Mk ≤ Nk , ∀k , or Mk ≤ Nk , ∀k .

Let f ∈ C∞(Ω) and M be a weight matrix.
Then f ∈ E{M}(Ω) iff

∀K ⋐ Ω ∃M ∈ M ∃C , h > 0 :

sup
x∈K

|Dαf (x)| ≤ Ch|α|M|α| ∀α ∈ Nn
0.

These classes include (Rainer–Schindl 2016)

Denjoy-Carleman classes given by single weight sequences.

Braun-Meise-Taylor classes given by weight functions.
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Normal weight matrices

A weight matrix M is normal if the following conditions hold
(where mk = Mk/k!):

∀M ∈ M : m2
k ≤ mk−1mk+1 ∀k ∈ N (1)

(mk)
1/k → ∞ for k → ∞, (2)

∀M ∈ M ∃N ∈ M ∃C > 0 :

Mk+ℓ ≤ C k+ℓ+1NkNℓ ∀k, ℓ ∈ N0.
(3)

Definition

Let M be a sequence satisfying (1). The weight associated to M is

hM(t) = inf
k
mkt

k .
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Remarks

From now on M is always normal. Then

Any BMT-class given by a subadditive weight function can be
described by a normal weight matrix.

E{M}(Ω) is closed under composition and the implicit function
theorem holds. (Rainer–Schindl 2016)

⇝ We can define manifolds of class {M}.
Every function f of class {M} can locally be {M}-almost analytically
extended (F.–Nenning–Rainer–Schindl 2020):

A distribution f is a function of class {M} near p0 ∈ Rn if and only if
there are a nbhd U of p0, a smooth function F ∈ C∞(U + iRn) with
F |U = f |U and M ∈ M, C , h > 0 such that for all x + iy ∈ U × Rn:∣∣∂̄F (x + iy)

∣∣ ≤ ChM(Q|y |) (4)
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The ultradifferentiable wavefront set

We can use (4) to microlocalize:

Let u ∈ D′(Ω) and (x0, ξ0) ∈ Ω× Rn\{0}. (x0, ξ0) /∈ WF{M} u :⇐⇒
There are a nbhd U ⊆ Rn of x0, open convex cones Γ1, . . . , ΓN with
ξ0Γ

j < 0, j = 1, . . . ,N, and functions F j ∈ C∞(U + iΓj), j = 1, . . . ,N,
such that each F j satisfies (4) in U × Γj and

u|U =
N∑
j=1

bv F j .

In fact, we can define WF{M} u ⊆ T ∗M for distributions u ∈ D′(M) on
manifolds M of class {M} (F.–Nenning–Rainer–Schindl 2020).
In particular if Φ : M → N then Φ∗(WF{M} u) = WF{M}(Φ

∗u) for all
u ∈ D′(N).
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Remarks

(x , ξ) ∈ WF{M} u ⇔ (x ,−ξ) ∈ WF{M} ū.

If u ∈ D′(M) then π1(WF{M} u) = sing supp{M} u.

If M is a normal weight matrix then the microlocal elliptic theorem
holds for WF{M}: Suppose that P(x ,D) is linear differential operator

with coefficients in E{M}(Ω) and u ∈ D′(Ω) Then

WF{M} Pu ⊆ WF{M} u ⊆ WF{M} Pu ∪ CharP.

(F.–Nenning–Rainer–Schindl 2020; for BMT-Classes
cf. Albanese–Jornet–Oliaro 2010)
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If u ∈ D′(M) then π1(WF{M} u) = sing supp{M} u.

If M is a normal weight matrix then the microlocal elliptic theorem
holds for WF{M}: Suppose that P(x ,D) is linear differential operator

with coefficients in E{M}(Ω) and u ∈ D′(Ω) Then

WF{M} Pu ⊆ WF{M} u ⊆ WF{M} Pu ∪ CharP.

(F.–Nenning–Rainer–Schindl 2020; for BMT-Classes
cf. Albanese–Jornet–Oliaro 2010)
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Remarks II

Almost analytic functions with parameters

Let M be a regular weight matrix, U ⊆ Rn, V ⊆ Rd be open sets and
Γ ⊆ Rd an open convex cone.
We suppose that F ∈ C∞(U × V × Γ) is {M}-almost analytic in
(s, t) ∈ V × Γ, i.e. there is some ρ > 0 such that for each compact
K × L ⊆ U × V there are M ∈ M and C ,Q > 0 so that∣∣∂wF (x , s, t)∣∣ ≤ ChM(Q|t|), (x , s) ∈ K × L, |t| < δ

where w = s + it ∈ Cd .

Then u = bv F := limt→0 F ( . , . , t) ∈ D′(U × V ) and

WF{M} u = (U × V )× Rn × Γ◦.

Here Γ◦ = {ξ ∈ Rd : ξy ≥ 0 ∀ y ∈ Γ}
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Applications for CR functions

Let M ⊆ Cn+1 be a real hypersurface with CR bundle V of class {M}, M
being normal.
The characteristic bundle of M is

T 0M = {ω ∈ T ∗M : ξ(L) = 0 ∀ L ∈ V}.
Thence if u ∈ D′(M) is a CR distribution then WF{M} u ⊆ T 0M.

Local coordinates

If p0 ∈ M ⊆ Cn+1 then there are holomorphic coordinates (z ,w) ∈ Cn ×C
in a nbhd U of p0, vanishing at p0, such that

M ∩ U = {(z ,w) ∈ U : Imw = φ(z ,Rew)}

where φ ∈ E{M} is a real-valued function and φ(0) = 0 = dφ(0).
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Local setting

Φ : (x , y , s) 7→ (x + iy , s + iφ(z , s)) is a local parametrisation of M
near p0 = 0.

In the local coordinates (x , y , s) of M near p0 = 0 we have that

Lj =
∂

∂z̄j
− i

∂z̄jφ(x , y , s)

1 + i∂sφ(x , y , s)

∂

∂s
, j = 1, . . . , n, (5)

is a basis of the CR vector fields near p0.

Thus T 0
0M

∼= {(0, 0, σ) ∈ R2n+1 : σ ∈ R}.
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The wavefront set of a CR function
If u is a CR distribution defined near p0 and ũ = Φ∗(u) we see that

WF{M} u|p0 ∼= WF{M}Φ
∗(u)|0 ⊆

{
(0, 0, σ) ∈ R2n+1 : σ ∈ R\{0}

}

Suppose that u is the boundary value of a holomorphic function H on
{(x + iy , s + it) : t > φ(x , y , s)}.
Extend Φ (and Φ−1) {M}-almost analytically near p0 to a full
neighborhood in Cn+1, where Φ is still a diffeomorphism.

Then ũ = Φ∗u is the boundary value of the {M}-almost analytic
function H̃ = H ◦ Φ.

Φ−1
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The wavefront set of a CR function

H̃ is defined on a set of the form U × (0, ε), U ⊆ R2n+1 and ε > 0
and can continuously extended to U × {0} with H̃|U×{0} = ũ

It follows directly that

WF{M} ũ|0 ⊆ R2n × {σ ≥ 0}.

Hence
WF{M} ũ|0 =

{
(0, 0, σ) ∈ R2n+1 : σ > 0

}
.
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The Main Statement

Theorem (F. 2017/2020, F.–Lamel 2025)

Let M ⊆ Cn+1 and M ′ ⊆ Cn′+1 be two real hypersurfaces of class {M},
p0 ∈ M and h : M → M ′ be a Ck0-CR mapping that is k0-nondegenerate
at p0.
Suppose furthermore that h extends continuously to a holomorphic map H
on one side of M.
Then h is ultradifferentiable of class {M} near p0.
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Sketch of proof

It is enough to show that WF{M} h|p0 = ∅

We use the local coordinates for M discussed before:

Near p0 = 0 the hypersurface M is given by Imw = φ(z ,Rew) where
φ is a function of class {M} and φ(0, 0) = 0, dφ(0, 0) = 0.

Then the vector fields L1, . . . , Ln given by (5) form a basis for the CR
vector fields of M near p0.

Let ρ′ a local defining function of M ′ near h(0) then obviously
ρ′ ◦ h = 0 near 0 ∈ R2n+1.

For α ∈ Nn
0, |α| ≤ k0, consider

Lα
(
ρ′ ◦ h

)
(x , y , s) = Ψα

(
h(x , y , s),

(
Lβh(x , y , s)

)
|β|≤k0

)
= 0 (6)

in the local coordinates (x , y , s) ∈ R2n+1. Here Ψα is a function of class
{M} defined in some open set in Cn′+1 × CK which is polynomial in the
last variables.
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Sketch of the proof
Moreover,

Lα
(
∂ρ′

∂Z ′

(
Lβh(0, 0, 0)

)
|β|≤k0

)
=
∂Ψα

∂Z ′

(
h(0, 0, 0),

(
Lβh(0, 0, 0)

)
|β|≤k0

)

By assumption there are multi-indices α1, . . . , αn′+1 ∈ Nn
0 such that

the matrix (
∂Ψα1

∂Z ′ , . . . ,
∂Ψαn′+1

∂Z ′

)
is invertible at (h(0, 0, 0), (Lβ h̄(0, 0, 0))|β|≤k0).

Using the (smooth) implicit function theorem to “solve” the equation
Ψ(Z ′,Λ) = 0, (Ψ = (Ψα1 , . . . ,Ψαn′+1)) in a “particular” way we can

show that there is a smooth mapping ψ : Cn′+1 × CK → Cn′+1

defined near (0, (Lβh(0))|β|≤k0) such that (by (6))

h(x , y , s) = ψ

(
h(x , y , s),

(
Lβh(x , y , s)

)
|β|≤k0

)
and the following holds:
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Sketch of proof

First, ψ is holomorphic in the last K variables. Recall that by assumption
of the theorem we have that

there is a smooth extension H of h on U × I × (0, ε), U ⊆ R2n,
I ⊆ R, which is {M}-almost analytic in the last variables s + it.

Hence h̄ extends to an {M}-almost analytic mapping h̃ on
U × I × (−ε, 0).
Similarly, for each β ∈ Nn

0, L
β h̄ extends to a {M}-almost analytic

mapping H̃β on U × I × (−ε, 0).

Then we can show that

G (x , y , s, t) = ψ

(
H(x , y , s,−t),

(
H̃β(x , y , s, t)

)
|β|≤k0

)
is {M}-almost analytic on U × I × (−ε, 0).
(We may have to shrink U, I and ε.)
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Sketch of proof

Φ−1

It follows that

WF{M} h|0 =
n′+1⋃
j=1

WF{M} hj ⊆ ({0} × {σ > 0}) ∩ ({0} × {σ < 0}) = ∅

=⇒ 0 /∈ sing supp{M} h =
n′+1⋃
j=1

sing supp{M} hj .

□
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Outlook

In two papers B. Lamel and N. Mir (2018/2020) approached the problem
of regularity from a different point of view:

Let h : M → M ′ be a CR map. When is h not smooth (or
ultradifferentiable) on an open subset of M?

In order to present one of their theorems we need some definitions:

Definition

A CR mapping H : M → M ′ is strictly noncharacteristic if

H∗
(
T 0
H(p)M

′
)
= T 0

pM ∀p ∈ M.
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In order to present one of their theorems we need some definitions:

Definition

A CR mapping H : M → M ′ is strictly noncharacteristic if

H∗
(
T 0
H(p)M

′
)
= T 0

pM ∀p ∈ M.
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D’Angelo finite type

Let M ⊆ Cn+1 be a real hypersurface, p ∈ M and ρ a local defining
function of M near p. We set

∆(M, p) := sup
γ:D→Cn+1

γ(0)=p, γ≡/ p

ν0(ρ ◦ γ)
ν0(γ)

∈ R ∪ {∞}.

Here D ⊆ C is the unit disc, ν0(γ) is the vanishing order of γ at 0.

Definition

We say that M is of finite type at p if ∆(M, p) <∞.
If ∆(M, p) = ∞ then M is of infinite type at p.

IM := {p ∈ M : ∆(M, p) = ∞} ⊆ M.
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Geometric conditions for regularity

Theorem (Lamel–Mir 2018)

Let M ⊆ Cn+1, M ′ ⊆ Cn′+1 be real hypersurfaces with n′ > n ≥ 1.
Suppose that:

M and M ′ are of class C∞.

M is strongly pseudoconvex.

There is a strongly non-characteristic map H : M → M ′ of class
Cn′−n+1.

Then

H

((
sing suppC∞ H

)◦)
⊆ IM′ .
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Geometric conditions for regularity

Theorem (F.–Lamel 2025)

Let M ⊆ Cn+1, M ′ ⊆ Cn′+1 be real hypersurfaces with n′ > n ≥ 1.
Suppose that:

M and M ′ are of class {M}, M being normal.

M is strongly pseudoconvex.

There is a strongly non-characteristic map H : M → M ′ of class
Cn′−n+1.

Then

H

((
sing supp{M}H

)◦)
⊆ IM′ .
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Thank you for your attention!
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