

Ultradifferentiable regularity of CR mappings

Stefan Fürdös

The research has been partially funded by FWF grant 10.55776/PAT1994924
(Joint work with Bernhard Lamel)

University of Vienna

Valencia, June 19, 2025

International workshop on functional analysis
on the occasion of the 70th birthday of José Bonet

The Schwarz Reflection Principle

Theorem

Let h be a holomorphic function on the upper halfplane which extends continuously to a real-valued function on the real line. Then there is an entire function F such that $F = f$ on the closed upper plane.

The Schwarz Reflection Principle

Theorem

Let h be a holomorphic function on the upper halfplane which extends continuously to a real-valued function on the real line. Then there is an entire function F such that $F = f$ on the closed upper plane.

The Schwarz Reflection Principle

Theorem

Let h be a holomorphic function on the upper halfplane which extends continuously to a real-valued function on the real line. Then there is an entire function F such that $F = f$ on the closed upper plane.

Another point of view

- $h : \mathbb{R} \rightarrow \mathbb{R}$ is a continuous map of the real hypersurface $\mathbb{R} \subseteq \mathbb{C}$ into itself.

Another point of view

- $h : \mathbb{R} \rightarrow \mathbb{R}$ is a continuous map of the real hypersurface $\mathbb{R} \subseteq \mathbb{C}$ into itself.
- The reflection principle is a regularity result for the map h :
If h extends holomorphically to one side then h is in fact real-analytic.

Another point of view

- $h : \mathbb{R} \rightarrow \mathbb{R}$ is a continuous map of the real hypersurface $\mathbb{R} \subseteq \mathbb{C}$ into itself.
- The reflection principle is a regularity result for the map h :
If h extends holomorphically to one side then h is in fact real-analytic.
 - ▶ There is a microlocal interpretation: If $u \in \mathcal{D}'(\mathbb{R})$ then by definition

$$(x, -1) \notin \text{WF}_A u \iff (x, +1) \notin \text{WF}_A \bar{u} \quad \forall x \in \mathbb{R}.$$

The assumptions of the Schwarz reflection principle are: $u = \bar{u}$ and $(x, -1) \notin \text{WF}_A u$. Hence $\text{WF}_A u = \emptyset$.

Another point of view

- $h : \mathbb{R} \rightarrow \mathbb{R}$ is a continuous map of the real hypersurface $\mathbb{R} \subseteq \mathbb{C}$ into itself.
- The reflection principle is a regularity result for the map h :
If h extends holomorphically to one side then h is in fact real-analytic.
 - ▶ There is a microlocal interpretation: If $u \in \mathcal{D}'(\mathbb{R})$ then by definition

$$(x, -1) \notin \text{WF}_A u \iff (x, +1) \notin \text{WF}_A \bar{u} \quad \forall x \in \mathbb{R}.$$

The assumptions of the Schwarz reflection principle are: $u = \bar{u}$ and $(x, -1) \notin \text{WF}_A u$. Hence $\text{WF}_A u = \emptyset$.

- Question: Are there similar regularity results in higher dimensions?

Another point of view

- $h : \mathbb{R} \rightarrow \mathbb{R}$ is a continuous map of the real hypersurface $\mathbb{R} \subseteq \mathbb{C}$ into itself.
- The reflection principle is a regularity result for the map h :
If h extends holomorphically to one side then h is in fact real-analytic.
 - ▶ There is a microlocal interpretation: If $u \in \mathcal{D}'(\mathbb{R})$ then by definition

$$(x, -1) \notin \text{WF}_A u \iff (x, +1) \notin \text{WF}_A \bar{u} \quad \forall x \in \mathbb{R}.$$

The assumptions of the Schwarz reflection principle are: $u = \bar{u}$ and $(x, -1) \notin \text{WF}_A u$. Hence $\text{WF}_A u = \emptyset$.

- Question: Are there similar regularity results in higher dimensions?

Theorem (Fefferman 1974)

Let $D \subseteq \mathbb{C}^N$ and $D' \subseteq \mathbb{C}^N$ be two bounded strongly pseudoconvex domains with smooth boundaries. Then every biholomorphic mapping between D and D' extends to a smooth diffeomorphism of the boundaries.

Introduction: Real Submanifolds of \mathbb{C}^N

Let J be the complex structure operator on \mathbb{C}^N :

$$J(Z) = \bar{Z} \quad Z \in \mathbb{C}^N.$$

If M is a real submanifold of \mathbb{C}^N with tangent space $T_p M \subseteq \mathbb{C}^N$ at $p \in M$ then

$$T_p^c M = T_p M \cap J(T_p M)$$

is the *complex* tangent space of M at p .

$M \subseteq \mathbb{C}^N$ is CR : $\iff M \ni p \mapsto \dim_{\mathbb{C}} T_p^c M$ is constant.

$\dim_{\mathbb{C}} T_p^c M$ is the CR dimension of M .

Introduction: Real Submanifolds of \mathbb{C}^N

Let J be the complex structure operator on \mathbb{C}^N :

$$J(Z) = \bar{Z} \quad Z \in \mathbb{C}^N.$$

If M is a real submanifold of \mathbb{C}^N with tangent space $T_p M \subseteq \mathbb{C}^N$ at $p \in M$ then

$$T_p^c M = T_p M \cap J(T_p M)$$

is the *complex* tangent space of M at p .

$M \subseteq \mathbb{C}^N$ is CR : $\iff M \ni p \mapsto \dim_{\mathbb{C}} T_p^c M$ is constant.

$\dim_{\mathbb{C}} T_p^c M$ is the CR dimension of M .

Lemma

If $M \subseteq \mathbb{C}^{n+1}$ is a real hypersurface then M is a CR manifold of CR dimension n .

CR vector fields

If $\mathbb{C}T_p\mathbb{C}^N = \mathbb{C} \otimes T_p\mathbb{C}^N \cong \mathbb{C}^{2N}$ then

$$\frac{\partial}{\partial Z_j} \Big|_p = \frac{1}{2} \left(\frac{\partial}{\partial x_j} \Big|_p - i \frac{\partial}{\partial y_j} \Big|_p \right), \quad \frac{\partial}{\partial \bar{Z}_j} \Big|_p = \frac{1}{2} \left(\frac{\partial}{\partial x_j} \Big|_p + i \frac{\partial}{\partial y_j} \Big|_p \right),$$

where $j = 1, \dots, N$, is a basis.

Let $T_p^{(0,1)} = \text{span}\{\partial_{\bar{Z}_1}, \dots, \partial_{\bar{Z}_N}\} \subseteq \mathbb{C}T_p\mathbb{C}^N$ and denote by $T^{(0,1)}$ the associated bundle.

CR vector fields

If $\mathbb{C}T_p\mathbb{C}^N = \mathbb{C} \otimes T_p\mathbb{C}^N \cong \mathbb{C}^{2N}$ then

$$\frac{\partial}{\partial Z_j} \Big|_p = \frac{1}{2} \left(\frac{\partial}{\partial x_j} \Big|_p - i \frac{\partial}{\partial y_j} \Big|_p \right), \quad \frac{\partial}{\partial \bar{Z}_j} \Big|_p = \frac{1}{2} \left(\frac{\partial}{\partial x_j} \Big|_p + i \frac{\partial}{\partial y_j} \Big|_p \right),$$

where $j = 1, \dots, N$, is a basis.

Let $T_p^{(0,1)} = \text{span}\{\partial_{\bar{Z}_1}, \dots, \partial_{\bar{Z}_N}\} \subseteq \mathbb{C}T_p\mathbb{C}^N$ and denote by $T^{(0,1)}$ the associated bundle.

Definition

- If M is a CR manifold then

$$\mathcal{V} = \mathbb{C}T_p M \cap T^{(0,1)}$$

is the CR bundle of M (note that $\text{Re } \mathcal{V} = T^c M$).

CR vector fields

If $\mathbb{C}T_p\mathbb{C}^N = \mathbb{C} \otimes T_p\mathbb{C}^N \cong \mathbb{C}^{2N}$ then

$$\frac{\partial}{\partial Z_j} \Big|_p = \frac{1}{2} \left(\frac{\partial}{\partial x_j} \Big|_p - i \frac{\partial}{\partial y_j} \Big|_p \right), \quad \frac{\partial}{\partial \bar{Z}_j} \Big|_p = \frac{1}{2} \left(\frac{\partial}{\partial x_j} \Big|_p + i \frac{\partial}{\partial y_j} \Big|_p \right),$$

where $j = 1, \dots, N$, is a basis.

Let $T_p^{(0,1)} = \text{span}\{\partial_{\bar{Z}_1}, \dots, \partial_{\bar{Z}_N}\} \subseteq \mathbb{C}T_p\mathbb{C}^N$ and denote by $T^{(0,1)}$ the associated bundle.

Definition

- If M is a CR manifold then

$$\mathcal{V} = \mathbb{C}T_p M \cap T^{(0,1)}$$

is the CR bundle of M (note that $\text{Re } \mathcal{V} = T^c M$).

- A CR vector field of M is a section L of \mathcal{V} over M .
We write $L \in \mathcal{V}$.

CR functions and CR mappings

Definition

- A function (distribution) f on a CR manifold M is a CR function if $Lf = 0$ for all CR vector fields L of M .

CR functions and CR mappings

Definition

- A function (distribution) f on a CR manifold M is a CR function if $Lf = 0$ for all CR vector fields L of M .
- Let $M \subseteq \mathbb{C}^N$ and $M' \subseteq \mathbb{C}^{N'}$ and $h : M \rightarrow M'$ a mapping. Then h is a CR mapping if

$$h_*(\mathcal{V}_p) \subseteq \mathcal{V}_{h(p)}, \quad \forall p \in M.$$

CR functions and CR mappings

Definition

- A function (distribution) f on a CR manifold M is a CR function if $Lf = 0$ for all CR vector fields L of M .
- Let $M \subseteq \mathbb{C}^N$ and $M' \subseteq \mathbb{C}^{N'}$ and $h : M \rightarrow M'$ a mapping. Then h is a CR mapping if

$$h_*(\mathcal{V}_p) \subseteq \mathcal{V}_{h(p)}, \quad \forall p \in M.$$

Remark

- If M is a real hypersurface and F a holomorphic function on one side of M which extends continuously to M then $F|_M$ is a CR function.

CR functions and CR mappings

Definition

- A function (distribution) f on a CR manifold M is a CR function if $Lf = 0$ for all CR vector fields L of M .
- Let $M \subseteq \mathbb{C}^N$ and $M' \subseteq \mathbb{C}^{N'}$ and $h : M \rightarrow M'$ a mapping. Then h is a CR mapping if

$$h_*(\mathcal{V}_p) \subseteq \mathcal{V}_{h(p)}, \quad \forall p \in M.$$

Remark

- If M is a real hypersurface and F a holomorphic function on one side of M which extends continuously to M then $F|_M$ is a CR function.
- If $h = (h_1, \dots, h_{N'}) : M \rightarrow M'$ is a CR mapping then h_j is a CR function on M for all $j = 1, \dots, N'$.

Remark

Let $h : M \rightarrow M'$ be a CR mapping with $n = \dim_{CR} M$ and $p \in M$. Suppose that there is a basis of CR vector fields L_1, \dots, L_n defined near p and let ρ' be a local defining function of M' near $h(p)$.

Remark

Let $h : M \rightarrow M'$ be a CR mapping with $n = \dim_{CR} M$ and $p \in M$. Suppose that there is a basis of CR vector fields L_1, \dots, L_n defined near p and let ρ' be a local defining function of M' near $h(p)$. Then the question of the regularity of the CR map h near p can be formulated as a regularity problem for the following overdetermined system of PDEs with nonlinear side conditions:

$$(*) = \begin{cases} L_j h_k(q) = 0, & j = 1, \dots, N, \ k = 1, \dots, N', \\ \rho'(h(q)) = 0 & q \text{ near } p. \end{cases}$$

Remark

Let $h : M \rightarrow M'$ be a CR mapping with $n = \dim_{CR} M$ and $p \in M$. Suppose that there is a basis of CR vector fields L_1, \dots, L_n defined near p and let ρ' be a local defining function of M' near $h(p)$.

Then the question of the regularity of the CR map h near p can be formulated as a regularity problem for the following overdetermined system of PDEs with nonlinear side conditions:

$$(*) = \begin{cases} L_j h_k(q) = 0, & j = 1, \dots, N, \ k = 1, \dots, N', \\ \rho'(h(q)) = 0 & q \text{ near } p. \end{cases}$$

Problem

If the data of $(*)$ (i.e. L_1, \dots, L_n, ρ') is \mathcal{C}^∞ (\mathcal{C}^ω , etc.), under which conditions is the solution h of $(*)$ \mathcal{C}^∞ (\mathcal{C}^ω , etc.)?

Further definitions

- Let $M \subseteq \mathbb{C}^{n+1}$ and $M' \subseteq \mathbb{C}^{n'+1}$ be real hypersurfaces and $h : M \rightarrow M'$ be a CR mapping defined near $p_0 \in M$.
- Assume that L_1, \dots, L_n is a local basis of CR vector fields near a point p_0 and ρ' a local defining function of M' near $q_0 \in H(p_0)$.

Further definitions

- Let $M \subseteq \mathbb{C}^{n+1}$ and $M' \subseteq \mathbb{C}^{n'+1}$ be real hypersurfaces and $h : M \rightarrow M'$ be a CR mapping defined near $p_0 \in M$.
- Assume that L_1, \dots, L_n is a local basis of CR vector fields near a point p_0 and ρ' a local defining function of M' near $q_0 \in H(p_0)$.

If $Z' = (Z_1, \dots, Z'_{n'+1})$ denote the coordinates of $\mathbb{C}^{n'+1}$ then we write $\partial \rho' / \partial Z' = (\partial \rho' / \partial Z'_1, \dots, \partial \rho' / \partial Z'_{n'+1})$. If h is of class \mathcal{C}^k then we set

$$E_k(p_0) = \text{span} \left\{ L^\alpha \left(\frac{\partial \rho}{\partial Z'}(h(Z)) \right) \Big|_{Z=p_0} : \alpha \in \mathbb{N}_0^n, |\alpha| \leq k \right\}.$$

Here $L^\alpha = L_1^{\alpha_1} \dots L_n^{\alpha_n}$.

Obviously, $E_k(p_0) \subseteq E_{k+1}(p_0)$ when h is of class \mathcal{C}^{k+1} .

Finitely nondegenerate CR mappings

Definition

The CR mapping h is k_0 -nondegenerate at p_0 if h is of class \mathcal{C}^{k_0} near p_0 and $E_{k_0-1}(p_0) \subsetneq E_{k_0}(p_0) = \mathbb{C}^{n'+1}$.

Finitely nondegenerate CR mappings

Definition

The CR mapping h is k_0 -nondegenerate at p_0 if h is of class \mathcal{C}^{k_0} near p_0 and $E_{k_0-1}(p_0) \subsetneq E_{k_0}(p_0) = \mathbb{C}^{n'+1}$.

Theorem (Lamel 2001/04)

Let $M \subseteq \mathbb{C}^{n+1}$, $M' \subseteq \mathbb{C}^{n'+1}$ be real hypersurfaces and $k_0 \in \mathbb{N}$.

Suppose that $h : M \rightarrow M'$ is a CR mapping which is k_0 -nondegenerate at $p_0 \in M$ and which extends continuously to a holomorphic mapping on one side of M .

If M and M' are smooth (real-analytic) then h is smooth (real-analytic) near p .

Main Ingrediants of the proof

- Using suitable charts of M and extends them in an almost-analytic way to a diffeomorphism.
- Fourier transforms.
- \leadsto microlocal analysis.

Main Ingrediants of the proof

- Using suitable charts of M and extends them in an almost-analytic way to a diffeomorphism.
- Fourier transforms.
- \leadsto microlocal analysis.

Problem

Let \mathcal{A} be an ultradifferentiable class, i.e. $\mathcal{C}^\omega \subseteq \mathcal{A} \subseteq \mathcal{C}^\infty = \mathcal{E}$.

(e.g. Gevrey classes \mathcal{G}^s , $s \geq 1$.)

If M, M' are \mathcal{A} -manifolds, is H of class \mathcal{A} ?

What conditions should \mathcal{A} satisfy?

Main Ingrediants of the proof

- Using suitable charts of M and extends them in an almost-analytic way to a diffeomorphism.
- Fourier transforms.
- \rightsquigarrow microlocal analysis.

Problem

Let \mathcal{A} be an ultradifferentiable class, i.e. $\mathcal{C}^\omega \subseteq \mathcal{A} \subseteq \mathcal{C}^\infty = \mathcal{E}$.

(e.g. Gevrey classes \mathcal{G}^s , $s \geq 1$.)

If M, M' are \mathcal{A} -manifolds, is H of class \mathcal{A} ?

What conditions should \mathcal{A} satisfy?

- \mathcal{A} has to be closed under composition and satisfying the implicit function theorem.

Main Ingrediants of the proof

- Using suitable charts of M and extends them in an almost-analytic way to a diffeomorphism.
- Fourier transforms.
- \rightsquigarrow microlocal analysis.

Problem

Let \mathcal{A} be an ultradifferentiable class, i.e. $\mathcal{C}^\omega \subseteq \mathcal{A} \subseteq \mathcal{C}^\infty = \mathcal{E}$.

(e.g. Gevrey classes \mathcal{G}^s , $s \geq 1$.)

If M, M' are \mathcal{A} -manifolds, is H of class \mathcal{A} ?

What conditions should \mathcal{A} satisfy?

- \mathcal{A} has to be closed under composition and satisfying the implicit function theorem.
- \mathcal{A} has to be microlocalizable, i.e. for a distribution u the \mathcal{A} -wavefront set $\text{WF}_{\mathcal{A}} u$ can be defined.

Main Ingrediants of the proof

- Using suitable charts of M and extends them in an almost-analytic way to a diffeomorphism.
- Fourier transforms.
- \rightsquigarrow microlocal analysis.

Problem

Let \mathcal{A} be an ultradifferentiable class, i.e. $\mathcal{C}^\omega \subseteq \mathcal{A} \subseteq \mathcal{C}^\infty = \mathcal{E}$.

(e.g. Gevrey classes \mathcal{G}^s , $s \geq 1$.)

If M, M' are \mathcal{A} -manifolds, is H of class \mathcal{A} ?

What conditions should \mathcal{A} satisfy?

- \mathcal{A} has to be closed under composition and satisfying the implicit function theorem.
- \mathcal{A} has to be microlocalizable, i.e. for a distribution u the \mathcal{A} -wavefront set $\text{WF}_{\mathcal{A}} u$ can be defined.
- The algebra \mathcal{A} can be characterized by almost-analytic extensions.

Classes given by weight matrices

- We say that a sequence $\mathbf{M} = (M_k)_k$ of positive numbers is a weight sequence if $M_0 = 1$ and $M_k^2 \leq M_{k-1}M_{k+1}$ for all $k \in \mathbb{N}$.

Classes given by weight matrices

- We say that a sequence $\mathbf{M} = (M_k)_k$ of positive numbers is a weight sequence if $M_0 = 1$ and $M_k^2 \leq M_{k-1}M_{k+1}$ for all $k \in \mathbb{N}$.
- A weight matrix \mathfrak{M} is a family of weight matrices such that for any pair $\mathbf{M}, \mathbf{N} \in \mathfrak{M}$ we have either $M_k \leq N_k, \forall k$, or $M_k \geq N_k, \forall k$.

Classes given by weight matrices

- We say that a sequence $\mathbf{M} = (M_k)_k$ of positive numbers is a weight sequence if $M_0 = 1$ and $M_k^2 \leq M_{k-1}M_{k+1}$ for all $k \in \mathbb{N}$.
- A weight matrix \mathfrak{M} is a family of weight matrices such that for any pair $\mathbf{M}, \mathbf{N} \in \mathfrak{M}$ we have either $M_k \leq N_k, \forall k$, or $M_k \geq N_k, \forall k$.

Let $f \in \mathcal{C}^\infty(\Omega)$ and \mathfrak{M} be a weight matrix.

Then $f \in \mathcal{E}^{\{\mathfrak{M}\}}(\Omega)$ iff

$$\forall K \Subset \Omega \quad \exists \mathbf{M} \in \mathfrak{M} \quad \exists C, h > 0 : \\ \sup_{x \in K} |D^\alpha f(x)| \leq Ch^{|\alpha|} M_{|\alpha|} \quad \forall \alpha \in \mathbb{N}_0^n.$$

Classes given by weight matrices

- We say that a sequence $\mathbf{M} = (M_k)_k$ of positive numbers is a weight sequence if $M_0 = 1$ and $M_k^2 \leq M_{k-1}M_{k+1}$ for all $k \in \mathbb{N}$.
- A weight matrix \mathfrak{M} is a family of weight matrices such that for any pair $\mathbf{M}, \mathbf{N} \in \mathfrak{M}$ we have either $M_k \leq N_k, \forall k$, or $M_k \geq N_k, \forall k$.

Let $f \in \mathcal{C}^\infty(\Omega)$ and \mathfrak{M} be a weight matrix.

Then $f \in \mathcal{E}^{\{\mathfrak{M}\}}(\Omega)$ iff

$$\begin{aligned} & \forall K \Subset \Omega \quad \exists \mathbf{M} \in \mathfrak{M} \quad \exists C, h > 0 : \\ & \sup_{x \in K} |D^\alpha f(x)| \leq Ch^{|\alpha|} M_{|\alpha|} \quad \forall \alpha \in \mathbb{N}_0^n. \end{aligned}$$

These classes include (Rainer–Schindl 2016)

- Denjoy–Carleman classes given by single weight sequences.
- Braun–Meise–Taylor classes given by weight functions.

Normal weight matrices

A weight matrix \mathbf{M} is *normal* if the following conditions hold (where $m_k = M_k/k!$):

$$\forall \mathbf{M} \in \mathfrak{M} : \quad m_k^2 \leq m_{k-1} m_{k+1} \quad \forall k \in \mathbb{N} \quad (1)$$

$$(m_k)^{1/k} \rightarrow \infty \quad \text{for } k \rightarrow \infty, \quad (2)$$

$$\begin{aligned} \forall \mathbf{M} \in \mathfrak{M} \exists \mathbf{N} \in \mathfrak{M} \exists C > 0 : \\ M_{k+\ell} \leq C^{k+\ell+1} N_k N_\ell \quad \forall k, \ell \in \mathbb{N}_0. \end{aligned} \quad (3)$$

Definition

Let \mathbf{M} be a sequence satisfying (1). The weight associated to \mathbf{M} is

$$h_{\mathbf{M}}(t) = \inf_k m_k t^k.$$

Remarks

From now on \mathfrak{M} is always normal. Then

- Any BMT-class given by a subadditive weight function can be described by a normal weight matrix.

Remarks

From now on \mathfrak{M} is always normal. Then

- Any BMT-class given by a subadditive weight function can be described by a normal weight matrix.
- $\mathcal{E}^{\{\mathfrak{M}\}}(\Omega)$ is closed under composition and the implicit function theorem holds. (Rainer–Schindl 2016)

Remarks

From now on \mathfrak{M} is always normal. Then

- Any BMT-class given by a subadditive weight function can be described by a normal weight matrix.
- $\mathcal{E}^{\{\mathfrak{M}\}}(\Omega)$ is closed under composition and the implicit function theorem holds. (Rainer–Schindl 2016)
- \rightsquigarrow We can define manifolds of class $\{\mathfrak{M}\}$.

Remarks

From now on \mathfrak{M} is always normal. Then

- Any BMT-class given by a subadditive weight function can be described by a normal weight matrix.
- $\mathcal{E}^{\{\mathfrak{M}\}}(\Omega)$ is closed under composition and the implicit function theorem holds. (Rainer–Schindl 2016)
- \rightsquigarrow We can define manifolds of class $\{\mathfrak{M}\}$.
- Every function f of class $\{\mathfrak{M}\}$ can locally be $\{\mathfrak{M}\}$ -almost analytically extended (F.–Nenning–Rainer–Schindl 2020):

Remarks

From now on \mathfrak{M} is always normal. Then

- Any BMT-class given by a subadditive weight function can be described by a normal weight matrix.
- $\mathcal{E}^{\{\mathfrak{M}\}}(\Omega)$ is closed under composition and the implicit function theorem holds. (Rainer–Schindl 2016)
- \rightsquigarrow We can define manifolds of class $\{\mathfrak{M}\}$.
- Every function f of class $\{\mathfrak{M}\}$ can locally be $\{\mathfrak{M}\}$ -almost analytically extended (F.–Nenning–Rainer–Schindl 2020):

A distribution f is a function of class $\{\mathfrak{M}\}$ near $p_0 \in \mathbb{R}^n$ if and only if there are a nbhd U of p_0 , a smooth function $F \in \mathcal{C}^\infty(U + i\mathbb{R}^n)$ with $F|_U = f|_U$ and $\mathbf{M} \in \mathfrak{M}$, $C, h > 0$ such that for all $x + iy \in U \times \mathbb{R}^n$:

$$|\bar{\partial}F(x + iy)| \leq Ch_{\mathbf{M}}(Q|y|) \quad (4)$$

The ultradifferentiable wavefront set

We can use (4) to microlocalize:

Let $u \in \mathcal{D}'(\Omega)$ and $(x_0, \xi_0) \in \Omega \times \mathbb{R}^n \setminus \{0\}$. $(x_0, \xi_0) \notin \text{WF}_{\{\mathfrak{M}\}} u : \iff$
There are a nbhd $U \subseteq \mathbb{R}^n$ of x_0 , open convex cones $\Gamma^1, \dots, \Gamma^N$ with
 $\xi_0 \Gamma^j < 0$, $j = 1, \dots, N$, and functions $F^j \in \mathcal{C}^\infty(U + i\Gamma^j)$, $j = 1, \dots, N$,
such that each F^j satisfies (4) in $U \times \Gamma^j$ and

$$u|_U = \sum_{j=1}^N \text{bv } F^j.$$

In fact, we can define $\text{WF}_{\{\mathfrak{M}\}} u \subseteq T^*M$ for distributions $u \in \mathcal{D}'(M)$ on manifolds M of class $\{\mathfrak{M}\}$ (F.-Nenning–Rainer–Schindl 2020).

In particular if $\Phi : M \rightarrow N$ then $\Phi^*(\text{WF}_{\{\mathfrak{M}\}} u) = \text{WF}_{\{\mathfrak{M}\}}(\Phi^* u)$ for all $u \in \mathcal{D}'(N)$.

Remarks

- $(x, \xi) \in \text{WF}_{\{\mathfrak{M}\}} u \Leftrightarrow (x, -\xi) \in \text{WF}_{\{\mathfrak{M}\}} \bar{u}.$

Remarks

- $(x, \xi) \in \text{WF}_{\{\mathfrak{M}\}} u \Leftrightarrow (x, -\xi) \in \text{WF}_{\{\mathfrak{M}\}} \bar{u}.$
- If $u \in \mathcal{D}'(M)$ then $\pi_1(\text{WF}_{\{\mathfrak{M}\}} u) = \text{sing supp}_{\{\mathfrak{M}\}} u.$

Remarks

- $(x, \xi) \in \text{WF}_{\{\mathfrak{M}\}} u \Leftrightarrow (x, -\xi) \in \text{WF}_{\{\mathfrak{M}\}} \bar{u}$.
- If $u \in \mathcal{D}'(M)$ then $\pi_1(\text{WF}_{\{\mathfrak{M}\}} u) = \text{sing supp}_{\{\mathfrak{M}\}} u$.
- If \mathfrak{M} is a normal weight matrix then the microlocal elliptic theorem holds for $\text{WF}_{\{\mathfrak{M}\}}$: Suppose that $P(x, D)$ is linear differential operator with coefficients in $\mathcal{E}^{\{\mathfrak{M}\}}(\Omega)$ and $u \in \mathcal{D}'(\Omega)$ Then

$$\text{WF}_{\{\mathfrak{M}\}} Pu \subseteq \text{WF}_{\{\mathfrak{M}\}} u \subseteq \text{WF}_{\{\mathfrak{M}\}} Pu \cup \text{Char } P.$$

(F.-Nenning–Rainer–Schindl 2020; for BMT-Classes
cf. Albanese–Jornet–Oliaro 2010)

Remarks II

Almost analytic functions with parameters

Let \mathfrak{M} be a regular weight matrix, $U \subseteq \mathbb{R}^n$, $V \subseteq \mathbb{R}^d$ be open sets and $\Gamma \subseteq \mathbb{R}^d$ an open convex cone.

We suppose that $F \in \mathcal{C}^\infty(U \times V \times \Gamma)$ is $\{\mathfrak{M}\}$ -almost analytic in $(s, t) \in V \times \Gamma$, i.e. there is some $\rho > 0$ such that for each compact $K \times L \subseteq U \times V$ there are $\mathbf{M} \in \mathfrak{M}$ and $C, Q > 0$ so that

$$|\bar{\partial}_w F(x, s, t)| \leq Ch_{\mathbf{M}}(Q|t|), \quad (x, s) \in K \times L, |t| < \delta$$

where $w = s + it \in \mathbb{C}^d$.

Then $u = \text{bv } F := \lim_{t \rightarrow 0} F(\cdot, \cdot, t) \in \mathcal{D}'(U \times V)$ and

$$\text{WF}_{\{\mathfrak{M}\}} u = (U \times V) \times \mathbb{R}^n \times \Gamma^\circ.$$

Here $\Gamma^\circ = \{\xi \in \mathbb{R}^d : \xi y \geq 0 \quad \forall y \in \Gamma\}$

Applications for CR functions

Let $M \subseteq \mathbb{C}^{n+1}$ be a real hypersurface with CR bundle \mathcal{V} of class $\{\mathfrak{M}\}$, \mathfrak{M} being normal.

The characteristic bundle of M is

$$T^0 M = \{\omega \in T^* M : \xi(L) = 0 \quad \forall L \in \mathcal{V}\}.$$

Thence if $u \in \mathcal{D}'(M)$ is a CR distribution then $\text{WF}_{\{\mathfrak{M}\}} u \subseteq T^0 M$.

Applications for CR functions

Let $M \subseteq \mathbb{C}^{n+1}$ be a real hypersurface with CR bundle \mathcal{V} of class $\{\mathfrak{M}\}$, \mathfrak{M} being normal.

The characteristic bundle of M is

$$T^0 M = \{\omega \in T^* M : \xi(L) = 0 \quad \forall L \in \mathcal{V}\}.$$

Thence if $u \in \mathcal{D}'(M)$ is a CR distribution then $\text{WF}_{\{\mathfrak{M}\}} u \subseteq T^0 M$.

Local coordinates

If $p_0 \in M \subseteq \mathbb{C}^{n+1}$ then there are holomorphic coordinates $(z, w) \in \mathbb{C}^n \times \mathbb{C}$ in a nbhd U of p_0 , vanishing at p_0 , such that

$$M \cap U = \{(z, w) \in U : \text{Im } w = \varphi(z, \text{Re } w)\}$$

where $\varphi \in \mathcal{E}^{\{\mathfrak{M}\}}$ is a real-valued function and $\varphi(0) = 0 = d\varphi(0)$.

Local setting

- $\Phi : (x, y, s) \mapsto (x + iy, s + i\varphi(z, s))$ is a local parametrisation of M near $p_0 = 0$.
- In the local coordinates (x, y, s) of M near $p_0 = 0$ we have that

$$L_j = \frac{\partial}{\partial \bar{z}_j} - i \frac{\partial_{\bar{z}_j} \varphi(x, y, s)}{1 + i\partial_s \varphi(x, y, s)} \frac{\partial}{\partial s}, \quad j = 1, \dots, n, \quad (5)$$

is a basis of the CR vector fields near p_0 .

- Thus $T_0^0 M \cong \{(0, 0, \sigma) \in \mathbb{R}^{2n+1} : \sigma \in \mathbb{R}\}$.

The wavefront set of a CR function

- If u is a CR distribution defined near p_0 and $\tilde{u} = \Phi^*(u)$ we see that $\text{WF}_{\{\mathfrak{M}\}} u|_{p_0} \cong \text{WF}_{\{\mathfrak{M}\}} \Phi^*(u)|_0 \subseteq \{(0, 0, \sigma) \in \mathbb{R}^{2n+1} : \sigma \in \mathbb{R} \setminus \{0\}\}$

The wavefront set of a CR function

- If u is a CR distribution defined near p_0 and $\tilde{u} = \Phi^*(u)$ we see that $\text{WF}_{\{\mathfrak{M}\}} u|_{p_0} \cong \text{WF}_{\{\mathfrak{M}\}} \Phi^*(u)|_0 \subseteq \{(0, 0, \sigma) \in \mathbb{R}^{2n+1} : \sigma \in \mathbb{R} \setminus \{0\}\}$
- Suppose that u is the boundary value of a holomorphic function H on $\{(x + iy, s + it) : t > \varphi(x, y, s)\}$.

The wavefront set of a CR function

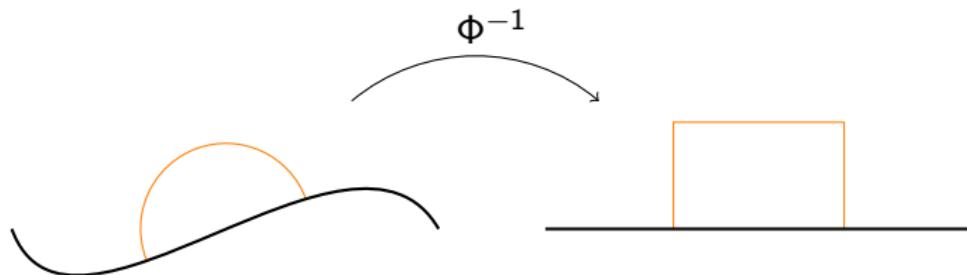
- If u is a CR distribution defined near p_0 and $\tilde{u} = \Phi^*(u)$ we see that $\text{WF}_{\{\mathfrak{M}\}} u|_{p_0} \cong \text{WF}_{\{\mathfrak{M}\}} \Phi^*(u)|_0 \subseteq \{(0, 0, \sigma) \in \mathbb{R}^{2n+1} : \sigma \in \mathbb{R} \setminus \{0\}\}$
- Suppose that u is the boundary value of a holomorphic function H on $\{(x + iy, s + it) : t > \varphi(x, y, s)\}$.
- Extend Φ (and Φ^{-1}) $\{\mathfrak{M}\}$ -almost analytically near p_0 to a full neighborhood in \mathbb{C}^{n+1} , where Φ is still a diffeomorphism.

The wavefront set of a CR function

- If u is a CR distribution defined near p_0 and $\tilde{u} = \Phi^*(u)$ we see that $\text{WF}_{\{\mathfrak{M}\}} u|_{p_0} \cong \text{WF}_{\{\mathfrak{M}\}} \Phi^*(u)|_0 \subseteq \{(0, 0, \sigma) \in \mathbb{R}^{2n+1} : \sigma \in \mathbb{R} \setminus \{0\}\}$
- Suppose that u is the boundary value of a holomorphic function H on $\{(x + iy, s + it) : t > \varphi(x, y, s)\}$.
- Extend Φ (and Φ^{-1}) $\{\mathfrak{M}\}$ -almost analytically near p_0 to a full neighborhood in \mathbb{C}^{n+1} , where Φ is still a diffeomorphism.
- Then $\tilde{u} = \Phi^* u$ is the boundary value of the $\{\mathfrak{M}\}$ -almost analytic function $\tilde{H} = H \circ \Phi$.

The wavefront set of a CR function

- If u is a CR distribution defined near p_0 and $\tilde{u} = \Phi^*(u)$ we see that $\text{WF}_{\{\mathfrak{M}\}} u|_{p_0} \cong \text{WF}_{\{\mathfrak{M}\}} \Phi^*(u)|_0 \subseteq \{(0, 0, \sigma) \in \mathbb{R}^{2n+1} : \sigma \in \mathbb{R} \setminus \{0\}\}$
- Suppose that u is the boundary value of a holomorphic function H on $\{(x + iy, s + it) : t > \varphi(x, y, s)\}$.
- Extend Φ (and Φ^{-1}) $\{\mathfrak{M}\}$ -almost analytically near p_0 to a full neighborhood in \mathbb{C}^{n+1} , where Φ is still a diffeomorphism.
- Then $\tilde{u} = \Phi^* u$ is the boundary value of the $\{\mathfrak{M}\}$ -almost analytic function $\tilde{H} = H \circ \Phi$.



The wavefront set of a CR function

- \tilde{H} is defined on a set of the form $U \times (0, \varepsilon)$, $U \subseteq \mathbb{R}^{2n+1}$ and $\varepsilon > 0$ and can continuously extended to $U \times \{0\}$ with $\tilde{H}|_{U \times \{0\}} = \tilde{u}$
- It follows directly that

$$\text{WF}_{\{\mathfrak{M}\}} \tilde{u}|_0 \subseteq \mathbb{R}^{2n} \times \{\sigma \geq 0\}.$$

- Hence

$$\text{WF}_{\{\mathfrak{M}\}} \tilde{u}|_0 = \{(0, 0, \sigma) \in \mathbb{R}^{2n+1} : \sigma > 0\}.$$

The Main Statement

Theorem (F. 2017/2020, F.-Lamel 2025)

Let $M \subseteq \mathbb{C}^{n+1}$ and $M' \subseteq \mathbb{C}^{n'+1}$ be two real hypersurfaces of class $\{\mathfrak{M}\}$, $p_0 \in M$ and $h : M \rightarrow M'$ be a \mathcal{C}^{k_0} -CR mapping that is k_0 -nondegenerate at p_0 .

Suppose furthermore that h extends continuously to a holomorphic map H on one side of M .

Then h is ultradifferentiable of class $\{\mathfrak{M}\}$ near p_0 .

Sketch of proof

It is enough to show that $\text{WF}_{\{\mathfrak{M}\}} h|_{p_0} = \emptyset$

Sketch of proof

It is enough to show that $\text{WF}_{\{\mathfrak{M}\}} h|_{p_0} = \emptyset$

We use the local coordinates for M discussed before:

- Near $p_0 = 0$ the hypersurface M is given by $\text{Im } w = \varphi(z, \text{Re } w)$ where φ is a function of class $\{\mathfrak{M}\}$ and $\varphi(0, 0) = 0, d\varphi(0, 0) = 0$.
- Then the vector fields L_1, \dots, L_n given by (5) form a basis for the CR vector fields of M near p_0 .
- Let ρ' a local defining function of M' near $h(0)$ then obviously $\rho' \circ h = 0$ near $0 \in \mathbb{R}^{2n+1}$.

Sketch of proof

It is enough to show that $\text{WF}_{\{\mathfrak{M}\}} h|_{p_0} = \emptyset$

We use the local coordinates for M discussed before:

- Near $p_0 = 0$ the hypersurface M is given by $\text{Im } w = \varphi(z, \text{Re } w)$ where φ is a function of class $\{\mathfrak{M}\}$ and $\varphi(0, 0) = 0, d\varphi(0, 0) = 0$.
- Then the vector fields L_1, \dots, L_n given by (5) form a basis for the CR vector fields of M near p_0 .
- Let ρ' a local defining function of M' near $h(0)$ then obviously $\rho' \circ h = 0$ near $0 \in \mathbb{R}^{2n+1}$.

For $\alpha \in \mathbb{N}_0^n$, $|\alpha| \leq k_0$, consider

$$L^\alpha (\rho' \circ h)(x, y, s) = \Psi_\alpha \left(h(x, y, s), \left(L^\beta \bar{h}(x, y, s) \right)_{|\beta| \leq k_0} \right) = 0 \quad (6)$$

in the local coordinates $(x, y, s) \in \mathbb{R}^{2n+1}$. Here Ψ_α is a function of class $\{\mathfrak{M}\}$ defined in some open set in $\mathbb{C}^{n'+1} \times \mathbb{C}^K$ which is polynomial in the last variables.

Sketch of the proof

Moreover,

$$L^\alpha \left(\frac{\partial \rho'}{\partial Z'} \left(L^\beta \bar{h}(0, 0, 0) \right)_{|\beta| \leq k_0} \right) = \frac{\partial \Psi_\alpha}{\partial Z'} \left(h(0, 0, 0), \left(L^\beta \bar{h}(0, 0, 0) \right)_{|\beta| \leq k_0} \right)$$

Sketch of the proof

Moreover,

$$L^\alpha \left(\frac{\partial \rho'}{\partial Z'} \left(L^\beta \bar{h}(0, 0, 0) \right)_{|\beta| \leq k_0} \right) = \frac{\partial \Psi_\alpha}{\partial Z'} \left(h(0, 0, 0), \left(L^\beta \bar{h}(0, 0, 0) \right)_{|\beta| \leq k_0} \right)$$

- By assumption there are multi-indices $\alpha^1, \dots, \alpha^{n'+1} \in \mathbb{N}_0^n$ such that the matrix

$$\left(\frac{\partial \Psi_{\alpha^1}}{\partial Z'}, \dots, \frac{\partial \Psi_{\alpha^{n'+1}}}{\partial Z'} \right)$$

is invertible at $(h(0, 0, 0), (L^\beta \bar{h}(0, 0, 0))_{|\beta| \leq k_0})$.

- Using the (smooth) implicit function theorem to “solve” the equation $\Psi(Z', \Lambda) = 0$, ($\Psi = (\Psi_{\alpha^1}, \dots, \Psi_{\alpha^{n'+1}})$) in a “particular” way we can show that there is a smooth mapping $\psi : \mathbb{C}^{n'+1} \times \mathbb{C}^K \rightarrow \mathbb{C}^{n'+1}$ defined near $(0, (L^\beta \bar{h}(0))_{|\beta| \leq k_0})$ such that (by (6))

$$h(x, y, s) = \psi \left(h(x, y, s), \left(L^\beta \bar{h}(x, y, s) \right)_{|\beta| \leq k_0} \right)$$

and the following holds:

Sketch of proof

First, ψ is holomorphic in the last K variables. Recall that by assumption of the theorem we have that

- there is a smooth extension H of h on $U \times I \times (0, \varepsilon)$, $U \subseteq \mathbb{R}^{2n}$, $I \subseteq \mathbb{R}$, which is $\{\mathfrak{M}\}$ -almost analytic in the last variables $s + it$.
- Hence \bar{h} extends to an $\{\mathfrak{M}\}$ -almost analytic mapping \tilde{h} on $U \times I \times (-\varepsilon, 0)$.
- Similarly, for each $\beta \in \mathbb{N}_0^n$, $L^\beta \bar{h}$ extends to a $\{\mathfrak{M}\}$ -almost analytic mapping \tilde{H}_β on $U \times I \times (-\varepsilon, 0)$.

Sketch of proof

First, ψ is holomorphic in the last K variables. Recall that by assumption of the theorem we have that

- there is a smooth extension H of h on $U \times I \times (0, \varepsilon)$, $U \subseteq \mathbb{R}^{2n}$, $I \subseteq \mathbb{R}$, which is $\{\mathfrak{M}\}$ -almost analytic in the last variables $s + it$.
- Hence \bar{h} extends to an $\{\mathfrak{M}\}$ -almost analytic mapping \tilde{h} on $U \times I \times (-\varepsilon, 0)$.
- Similarly, for each $\beta \in \mathbb{N}_0^n$, $L^\beta \bar{h}$ extends to a $\{\mathfrak{M}\}$ -almost analytic mapping \tilde{H}_β on $U \times I \times (-\varepsilon, 0)$.

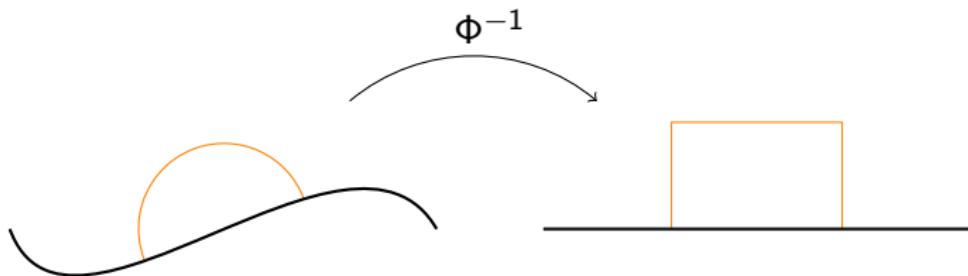
Then we can show that

$$G(x, y, s, t) = \psi \left(H(x, y, s, -t), \left(\tilde{H}_\beta(x, y, s, t) \right)_{|\beta| \leq k_0} \right)$$

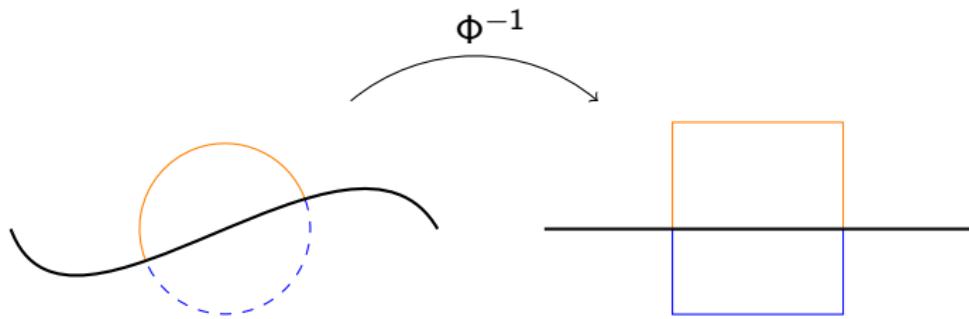
is $\{\mathfrak{M}\}$ -almost analytic on $U \times I \times (-\varepsilon, 0)$.

(We may have to shrink U, I and ε .)

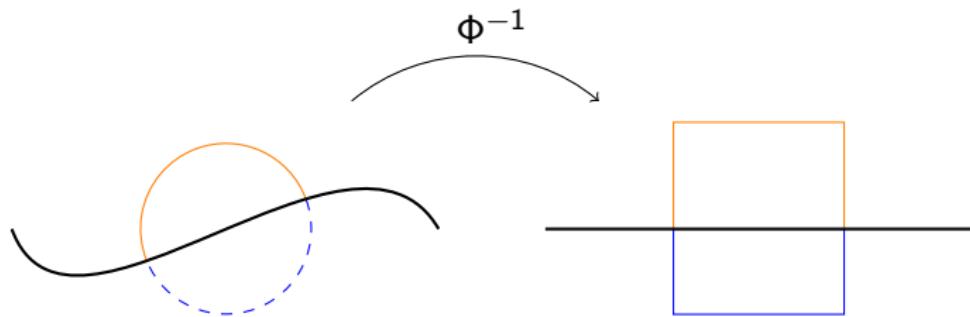
Sketch of proof



Sketch of proof



Sketch of proof



It follows that

$$\begin{aligned} \text{WF}_{\{\mathfrak{M}\}} h|_0 &= \bigcup_{j=1}^{n'+1} \text{WF}_{\{\mathfrak{M}\}} h_j \subseteq (\{0\} \times \{\sigma > 0\}) \cap (\{0\} \times \{\sigma < 0\}) = \emptyset \\ \implies 0 \notin \text{sing supp}_{\{\mathfrak{M}\}} h &= \bigcup_{j=1}^{n'+1} \text{sing supp}_{\{\mathfrak{M}\}} h_j. \end{aligned}$$

Outlook

In two papers B. Lamel and N. Mir (2018/2020) approached the problem of regularity from a different point of view:

Outlook

In two papers B. Lamel and N. Mir (2018/2020) approached the problem of regularity from a different point of view:

Let $h : M \rightarrow M'$ be a CR map. When is h not smooth (or ultradifferentiable) on an *open* subset of M ?

Outlook

In two papers B. Lamel and N. Mir (2018/2020) approached the problem of regularity from a different point of view:

Let $h : M \rightarrow M'$ be a CR map. When is h not smooth (or ultradifferentiable) on an *open* subset of M ?

In order to present one of their theorems we need some definitions:

Outlook

In two papers B. Lamel and N. Mir (2018/2020) approached the problem of regularity from a different point of view:

Let $h : M \rightarrow M'$ be a CR map. When is h not smooth (or ultradifferentiable) on an *open* subset of M ?

In order to present one of their theorems we need some definitions:

Definition

A CR mapping $H : M \rightarrow M'$ is *strictly noncharacteristic* if

$$H^* \left(T_{H(p)}^0 M' \right) = T_p^0 M \quad \forall p \in M.$$

D'Angelo finite type

Let $M \subseteq \mathbb{C}^{n+1}$ be a real hypersurface, $p \in M$ and ρ a local defining function of M near p . We set

$$\Delta(M, p) := \sup_{\substack{\gamma: \mathbb{D} \rightarrow \mathbb{C}^{n+1} \\ \gamma(0)=p, \gamma \not\equiv p}} \frac{\nu_0(\rho \circ \gamma)}{\nu_0(\gamma)} \in \mathbb{R} \cup \{\infty\}.$$

Here $\mathbb{D} \subseteq \mathbb{C}$ is the unit disc, $\nu_0(\gamma)$ is the vanishing order of γ at 0.

Definition

We say that M is of finite type at p if $\Delta(M, p) < \infty$.

If $\Delta(M, p) = \infty$ then M is of infinite type at p .

$$\mathcal{I}_M := \{p \in M : \Delta(M, p) = \infty\} \subseteq M.$$

Geometric conditions for regularity

Theorem (Lamel–Mir 2018)

Let $M \subseteq \mathbb{C}^{n+1}$, $M' \subseteq \mathbb{C}^{n'+1}$ be real hypersurfaces with $n' > n \geq 1$.

Suppose that:

- M and M' are of class \mathcal{C}^∞ .
- M is strongly pseudoconvex.
- There is a strongly non-characteristic map $H : M \rightarrow M'$ of class $\mathcal{C}^{n'-n+1}$.

Then

$$H\left(\left(\operatorname{sing supp}_{\mathcal{C}^\infty} H\right)^\circ\right) \subseteq \mathcal{I}_{M'}.$$

Geometric conditions for regularity

Theorem (F.-Lamel 2025)

Let $M \subseteq \mathbb{C}^{n+1}$, $M' \subseteq \mathbb{C}^{n'+1}$ be real hypersurfaces with $n' > n \geq 1$.

Suppose that:

- M and M' are of class $\{\mathfrak{M}\}$, \mathfrak{M} being normal.
- M is strongly pseudoconvex.
- There is a strongly non-characteristic map $H : M \rightarrow M'$ of class $\mathcal{C}^{n'-n+1}$.

Then

$$H\left(\left(\text{sing supp}_{\{\mathfrak{M}\}} H\right)^\circ\right) \subseteq \mathcal{I}_{M'}.$$

Thank you for your attention!