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The Schwarz Reflection Principle

Theorem

Let h be a holomorphic function on the upper halfplane which extends
continuously to a real-valued function on the real line. Then there is an
entire function F such that F = f on the closed upper plane.
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@ h:R — R is a continuous map of the real hypersurface R C C into
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If h extends holomorphically to one side then h is in fact real-analytic.
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Another point of view

@ h:R — R is a continuous map of the real hypersurface R C C into
itself.

@ The reflection principle is a regularity result for the map h:
If h extends holomorphically to one side then h is in fact real-analytic.
» There is a microlocal interpretation: If u € D'(R) then by definition
(x,—1) ¢ WFau <= (x,+1) ¢ WFai  Vx€eR.

The assumptions of the Schwarz reflection principle are: u = i and
(x,—1) ¢ WF4 u. Hence WF, u = 0.

Stefan Firdés (Vienna) Regularity of CR mappings 3/29



Another point of view

@ h:R — R is a continuous map of the real hypersurface R C C into
itself.

@ The reflection principle is a regularity result for the map h:
If h extends holomorphically to one side then h is in fact real-analytic.
» There is a microlocal interpretation: If u € D'(R) then by definition
(x,—1) ¢ WFau <= (x,+1) ¢ WFai  Vx€eR.

The assumptions of the Schwarz reflection principle are: u = i and
(x,—1) ¢ WF4 u. Hence WF, u = 0.

@ Question: Are there similar regularity results in higher dimensions?

Stefan Firdés (Vienna) Regularity of CR mappings 3/29



Another point of view

@ h:R — R is a continuous map of the real hypersurface R C C into
itself.

@ The reflection principle is a regularity result for the map h:
If h extends holomorphically to one side then h is in fact real-analytic.
» There is a microlocal interpretation: If u € D'(R) then by definition
(x,—1) ¢ WFau <= (x,+1) ¢ WFai  Vx€eR.

The assumptions of the Schwarz reflection principle are: u = i and
(x,—1) ¢ WF4 u. Hence WF, u = 0.

@ Question: Are there similar regularity results in higher dimensions?

Theorem (Fefferman 1974)

Let D C CN and D' C CN be two bounded strongly pseudoconvex
domains with smooth boundaries. Then every biholomorphic mapping
between D and D' extends to a smooth diffeomorphism of the boundaries.
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Introduction: Real Submanifolds of CN

Let J be the complex structure operator on CV:

J(Z2)=2Z2 ZzecCV

If M is a real submanifold of CV with tangent space T,M C CNatpewm
then

ToM=T,MNJ(T,M)
is the complex tangent space of M at p.
McCCVisCR <= M>p—dimc T;M is constant.

dim¢ T;M is the CR dimension of M.
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Introduction: Real Submanifolds of CN

Let J be the complex structure operator on CV:

J2)=Z zecV

If M is a real submanifold of CV with tangent space T,M C CNatpewm
then
ToM=T,MNJ(T,M)

is the complex tangent space of M at p.
McCCVisCR <= M>p—dimc T;M is constant.
dim¢ T5M is the CR dimension of M.

Lemma

If M C C"1 s a real hypersurface then M is a CR manifold of CR
dimension n.
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CR vector fields

If CT,CN = C® T,CN = C2N then

’ (3 ,-i) i_1<i +,-i)
82 aXJ 8pr ’ 87J-p_2 aXJp 8pr ’

where j =1,..., N, is a basis.
Let T(O’l) = span{& 07,1 C CT,CN and denote by T(1) the
assoaated bundle.
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CR vector fields

If CT,CN = C® T,CN = C2N then

‘ (6‘ ,-i) i_1<i +,-£)
82 aXJ 8pr ’ 67J-p_2 8ij ayjp ’

where j =1,..., N, is a basis.
Let T(o’l) = span{& 07,1 C CT,CN and denote by T(1) the
assoaated bundle.
Definition
o If M is a CR manifold then
V=CT,Mn TOD
is the CR bundle of M (note that ReV = T<M).
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CR vector fields

If CT,CN = C® T,CN = C2N then

‘ (6‘ ,-3> 0_1<@ +,-8)
82 8XJ ayjp ’ 87J-p_2 8xjp ayjp ’

where j =1,..., N, is a basis.
Let T(0 b= span{& 07,1 C CT,CN and denote by T(1) the
assoaated bundle.
Definition
o If M is a CR manifold then
V=CT,Mn TOD
is the CR bundle of M (note that ReV = T<M).

@ A CR vector field of M is a section L of V over M.
We write L € V.
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CR functions and CR mappings

Definition
@ A function (distribution) f on a CR manifold M is a CR function if
Lf =0 for all CR vector fields L of M.
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o Let MC CNand M CCV and h: M — M’ a mapping. Then h'is a
CR mapping if
h. (Vp) c Vh(p), Vpe M.

Stefan Firdés (Vienna) Regularity of CR mappings 6/29
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Definition
@ A function (distribution) f on a CR manifold M is a CR function if
Lf = 0 for all CR vector fields L of M.
o Let MC CNand M CCV and h: M — M’ a mapping. Then h'is a
CR mapping if
h. (Vp) C Vh(p), Vpe M.

Remark

@ If M is a real hypersurface and F a holomorphic function on one side
of M which extends continuously to M then F|y is a CR function.
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CR functions and CR mappings

Definition
@ A function (distribution) f on a CR manifold M is a CR function if
Lf = 0 for all CR vector fields L of M.
o Let MC CNand M CCV and h: M — M’ a mapping. Then h'is a
CR mapping if
h. (Vp) C Vh(p), Vpe M.

Remark
@ If M is a real hypersurface and F a holomorphic function on one side
of M which extends continuously to M then F|y is a CR function.
o If h=(h1,...,hyr) : M — M’ is a CR mapping
then hj is a CR function on M for all j =1,..., N'.
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Remark

Let h: M — M’ be a CR mapping with n = dimcg M and p € M.
Suppose that there is a basis of CR vector fields L4, ..., L, defined near p
and let p’ be a local defining function of M" near h(p).
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Remark

Let h: M — M’ be a CR mapping with n = dimcg M and p € M.
Suppose that there is a basis of CR vector fields L4, ..., L, defined near p
and let p’ be a local defining function of M" near h(p).

Then the question of the regularity of the CR map h near p can be

formulated as a regularity problem for the following overdetermined system
of PDEs with nonlinear side conditions:

(*)_ Ljhk(q) :0, j:].,...,N,k:].,...,N/,
p'(h(q)) =0  qnearp.
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Remark

Let h: M — M’ be a CR mapping with n = dimcg M and p € M.

Suppose that there is a basis of CR vector fields L4, ..., L, defined near p

and let p’ be a local defining function of M" near h(p).

Then the question of the regularity of the CR map h near p can be

formulated as a regularity problem for the following overdetermined system

of PDEs with nonlinear side conditions:

(*)_ Ljhk(q) :0, j:].,...,N,k:].,...,N/,
p'(h(q)) =0  qnearp.

Problem

If the data of (%) (i.e. L1,..., Ly, p') is C* (C¥, etc.), under which
conditions is the solution h of (x) C* (C¥, etc.)?
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Further definitions

o Let M C C"1 and M’ C C"*1 be real hypersurfaces and
h: M — M’ be a CR mapping defined near pg € M.

@ Assume that Lj,..., L, is a local basis of CR vector fields near a
point pp and p’ a local defining function of M’ near go € H(pp).
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Further definitions

o Let M C C"1 and M’ C C"*1 be real hypersurfaces and
h: M — M’ be a CR mapping defined near pg € M.

@ Assume that Lj,..., L, is a local basis of CR vector fields near a
point pp and p’ a local defining function of M’ near go € H(pp).

If 2/ = (Z1,...,Z;,,) denote the coordinates of C"'*1 then we write
0p'/0Z' = (00'/0Z],...,0p |0Zyi1). If his of class C* then we set

0
Ex(po) = spanq L“ <a§'(h(z))> raeNg, o] <k

Here L& = [ [%n.
Obviously, Ex(po) € Exy1(po) when h is of class Ck*1.
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Finitely nondegenerate CR mappings

Definition

The CR mapping h is ko-nondegenerate at pg if h is of class Ck near po
and Eg,-1(po) S Exo(po) = C" 1.
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Finitely nondegenerate CR mappings

Definition

The CR mapping h is ko-nondegenerate at pg if h is of class Ck near po
and Eg,-1(po) S Exo(po) = C" 1.

Theorem (Lamel 2001/04)

Let M C C™1, M’ C C"*! be real hypersurfaces and ko € N.
Suppose that h: M — M’ is a CR mapping which is kp-nondegenerate at

po € M and which extends continuously to a holomorphic mapping on one
side of M.

If M and M’ are smooth (real-analytic) then h is smooth (real-analytic)
near p.
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Main Ingrediants of the proof

@ Using suitable charts of M and extends them in an almost-analytic
way to a diffeomorphism.

@ Fourier transforms.

@ ~~ microlocal analysis.
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Main Ingrediants of the proof

@ Using suitable charts of M and extends them in an almost-analytic
way to a diffeomorphism.

@ Fourier transforms.

@ ~~ microlocal analysis.

Problem

Let A be an ultradifferentiable class, i.e. C* C ACC>®=E.
(e.g. Gevrey classes G°, s > 1.)

If M, M’ are A-manifolds, is H of class A?

What conditions should A satisfy?
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Main Ingrediants of the proof

@ Using suitable charts of M and extends them in an almost-analytic
way to a diffeomorphism.

@ Fourier transforms.

@ ~~ microlocal analysis.

Problem
Let A be an ultradifferentiable class, i.e. C* C ACC>®=E.
(e.g. Gevrey classes G°, s > 1.)
If M, M’ are A-manifolds, is H of class A?
What conditions should A satisfy?
@ A has to be closed under composition and satisfying the implicit
function theorem.
@ A has to be microlocalizable, i.e. for a distribution u the A-wavefront
set WF 4 u can be defined.

@ The algebra A can be characterized by almost-analytic extensions.
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Classes given by weight matrices

e We say that a squence M = (M) of positive numbers is a weight
sequence if My =1 and M,f < My 1My, for all k € N.
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Classes given by weight matrices

e We say that a squence M = (M) of positive numbers is a weight
sequence if My =1 and M,f < My 1My, for all k € N.

@ A weight matrix 91 is a family of weight matrices such that for any
pair M, N € 9t we have either M < Ny, Yk, or My < Ny, Vk.
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Classes given by weight matrices

e We say that a squence M = (M) of positive numbers is a weight
sequence if My =1 and Mf < My 1My, for all k € N.

@ A weight matrix 91 is a family of weight matrices such that for any
pair M, N € 9t we have either M < Ny, Yk, or My < Ny, Vk.

Let £ € C*°(2) and 9 be a weight matrix.
Then f € £H(Q) iff

VKeQ dMedMm dC,h>0:
sup|DYf(x)| < Ch|°“l\/l|a‘ Va e Ng.

xeK
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Classes given by weight matrices

e We say that a squence M = (M) of positive numbers is a weight
sequence if My =1 and M,% < My_1 My, for all k € N.

@ A weight matrix 91 is a family of weight matrices such that for any
pair M, N € 9t we have either M < Ny, Yk, or My < Ny, Vk.

Let £ € C*°(2) and 9 be a weight matrix.
Then f € £H(Q) iff
VKeQ IMeIM IC,h>0:
sup|DYf(x)| < Ch|a‘l\/l|a‘ Va e Ng.

xeK

These classes include (Rainer—Schindl 2016)
@ Denjoy-Carleman classes given by single weight sequences.

@ Braun-Meise-Taylor classes given by weight functions.
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Normal weight matrices

A weight matrix M is normal if the following conditions hold
(where my = My /k!):
YMeM: m?<me_imy1 YkeN
(m)Y* = 00 for k — oo,
VMeMINeM3IC>0:
Mo < CKFHINGN, k. € € No.

Definition
Let M be a sequence satisfying (1). The weight associated to M is

hM(t) = ir)(f mktk.
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Remarks

From now on 91 is always normal. Then

@ Any BMT-class given by a subadditive weight function can be
described by a normal weight matrix.
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o £M}(Q) is closed under composition and the implicit function
theorem holds. (Rainer-Schindl 2016)
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@ Any BMT-class given by a subadditive weight function can be
described by a normal weight matrix.

o £M}(Q) is closed under composition and the implicit function
theorem holds. (Rainer-Schindl 2016)

@ ~» We can define manifolds of class {9t}.

Stefan Firdés (Vienna) Regularity of CR mappings 13 /29



Remarks

From now on 91 is always normal. Then

o Any BMT-class given by a subadditive weight function can be
described by a normal weight matrix.

o £M}(Q) is closed under composition and the implicit function
theorem holds. (Rainer-Schindl 2016)

@ ~» We can define manifolds of class {9t}.

@ Every function f of class {9t} can locally be {9}-almost analytically
extended (F.—Nenning—Rainer-Schindl 2020):
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Remarks

From now on 91 is always normal. Then

o Any BMT-class given by a subadditive weight function can be
described by a normal weight matrix.

o £M}(Q) is closed under composition and the implicit function
theorem holds. (Rainer-Schindl 2016)

@ ~» We can define manifolds of class {9t}.

@ Every function f of class {9t} can locally be {9}-almost analytically
extended (F.—Nenning—Rainer-Schindl 2020):

A distribution f is a function of class {9t} near py € R" if and only if
there are a nbhd U of pg, a smooth function F € C*>°(U + iR") with
Fly=fly and M € M, C, h > 0 such that for all x+ iy € U x R™

|9F (x + iv)| < Chm(Qlyl) (4)
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The ultradifferentiable wavefront set

We can use (4) to microlocalize:

Let u € D/(Q) and (Xo,go) € Qx Rn\{O}. (Xo,go) ¢ WF{W(} u <
There are a nbhd U C R” of xg, open convex cones 't ... N with
&I/ <0,j=1,...,N, and functions F/ € C®(U +ilV), j=1,...,N,
such that each F/ satisfies (4) in U x I/ and

N
uly = vaFj.
j=1

In fact, we can define WFgny u C T*M for distributions u € D'(M) on
manifolds M of class {9t} (F.-Nenning—Rainer-Schind| 2020).

In particular if ® : M — N then ®*(WF oy, u) = WF 9py(®*u) for all
u e D'(N).
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Remarks

° (X,§) S WF{gm} u = (X7 —f) € WF{gm} u.
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° (X,§) S WF{gm} u = (X7 —f) € WF{gm} u.

o If u€ D'(M) then m1(WFony u) = sing suppyon) u-
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Remarks

) (X,f) S WF{gm} u<= (X, —g) S WF{{m} u.

o If u€ D'(M) then m1(WFony u) = sing suppyon) u-

o If 91 is a normal weight matrix then the microlocal elliptic theorem
holds for WF ony: Suppose that P(x, D) is linear differential operator

with coefficients in £{™(Q) and v € D'(Q) Then
WF{gm} Pu C WF{gm} uC WF{E)J?} Pu U Char P.

(F.=Nenning—Rainer=Schind| 2020; for BMT-Classes
cf. Albanese—Jornet—Oliaro 2010)
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Remarks I

Almost analytic functions with parameters

Let 9 be a regular weight matrix, U CR", V C R be open sets and
[ C RY an open convex cone.

We suppose that F € C*°(U x V x T') is {M}-almost analytic in
(s,t) € V xT, i.e. there is some p > 0 such that for each compact
KxLC Ux V thereare M € M and C, Q > 0 so that

‘5WF(X, s, t)‘ < Chm(Qlt]), (x,s) e Kx L, |t|<éd

where w = s + jt € C1.

Then u=bvF :=lime(yo F(., .,t) € D'(U x V) and
WFm u = (U x V) x R" xT°.

HereT° ={¢ €R? : ¢y >0 Vyerl}
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Applications for CR functions

Let M C C"*! be a real hypersurface with CR bundle V of class {91}, 9t

being normal.
The characteristic bundle of M is

TOM={weT*M: &L)=0VLeV}.
Thence if u € D'(M) is a CR distribution then WFop, u C TOM.
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Applications for CR functions

Let M C C"*! be a real hypersurface with CR bundle V of class {901}, 9
being normal.

The characteristic bundle of M is

TOM={weT*M: &L)=0VLeV}.
Thence if u € D'(M) is a CR distribution then WF gy, u C TM.
Local coordinates

If pp € M C C"*1 then there are holomorphic coordinates (z, w) € C" x C
in a nbhd U of pg, vanishing at pg, such that

MOU={(z,w)e U : Imw=p(z,Rew)}
where € £1™ is a real-valued function and (0) = 0 = d(0).
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Local setting

o ®:(x,y,s) —~ (x+iy,s+ip(z,s)) is a local parametrisation of M
near pp = 0.

@ In the local coordinates (x, y,s) of M near pg = 0 we have that
0 . 621'80(X7y75) 0

L= — — — j=1,... 5
10z Il+i85<p(x,y,s)6s’ J= 5 ()

is a basis of the CR vector fields near pg.
e Thus T9M 2 {(0,0,0) € R>"*! : 5 € R}.
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The wavefront set of a CR function

o If uis a CR distribution defined near pg and i = ®*(u) we see that
WF famy U] gy = WFomy *(u)|o € {(0,0,0) € R*"*! : o € R\{0}}
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The wavefront set of a CR function

o If uis a CR distribution defined near pg and i = ®*(u) we see that
WF famy U] gy = WFomy *(u)|o € {(0,0,0) € R*"*! : o € R\{0}}
@ Suppose that u is the boundary value of a holomorphic function H on
{(x+iy,s+it) : t>o(x,y,s)}.
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The wavefront set of a CR function
@ If uis a CR distribution defined near py and i = ®*(u) we see that
WF famy U] gy = WFomy *(u)|o € {(0,0,0) € R*"*! : o € R\{0}}
@ Suppose that u is the boundary value of a holomorphic function H on
{(x+iy,s+it) : t>o(x,y,s)}.
e Extend ® (and ®~1) {9 }-almost analytically near py to a full
neighborhood in C"*1, where @ is still a diffeomorphism.
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The wavefront set of a CR function

o H is defined on a set of the form U x (0,¢), U CR>lande >0
and can continuously extended to U x {0} with H|yy (o} =

o |t follows directly that
WF{m} ﬁ|o - R2n X {0‘ > 0}

@ Hence
WF famy dlo = {(0,0,0) € R*"™™ : 5 > 0}.
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The Main Statement

Theorem (F. 2017/2020, F.—Lamel 2025)

Let M C C" and M’ C C"*1 be two real hypersurfaces of class {9},
po € M and h: M — M’ be a C*-CR mapping that is kp-nondegenerate
at pp.

Suppose furthermore that h extends continuously to a holomorphic map H
on one side of M.

Then h is ultradifferentiable of class {9t} near po.
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Sketch of proof

It is enough to show that WF gpy h|p, = 0
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Sketch of proof
It is enough to show that WFony h|py = 0
We use the local coordinates for M discussed before:

@ Near pp = 0 the hypersurface M is given by Im w = ¢(z, Re w) where
¢ is a function of class {9t} and ¢(0,0) =0, dp(0,0) = 0.

@ Then the vector fields Ly, ..., L, given by (5) form a basis for the CR
vector fields of M near pg.

o Let p' a local defining function of M’ near h(0) then obviously
o' oh =0 near 0 € R>"*1,
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Sketch of proof
It is enough to show that WFony h|py = 0
We use the local coordinates for M discussed before:

@ Near pp = 0 the hypersurface M is given by Im w = ¢(z, Re w) where
¢ is a function of class {9t} and ¢(0,0) =0, dp(0,0) = 0.

@ Then the vector fields Ly, ..., L, given by (5) form a basis for the CR
vector fields of M near pg.

o Let p' a local defining function of M’ near h(0) then obviously
o' oh =0 near 0 € R>"*1,

For a € Ni, |a| < ko, consider

LY (p o h) (x,y,s) =V, <h(x,y, s), (Lﬁh(x,y,s)>|6§k0> =0 (6)

in the local coordinates (x, y,s) € R2™1 Here W, is a function of class
{9} defined in some open set in C”*1 x CK which is polynomial in the
last variables.
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Sketch of the proof

Moreover,

Lo (gg, (L7R(0,0, 0))%%) - % (h(0,0,0), <LBE(0,0,O)>|B|SkO)
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Sketch of the proof

Moreover,
ap’ — ov —
Lo (Lﬁh 0,0,0) _ % hO,O,O,(LBh 0,0,0)
(azl ( ) 5|Sko> 0z’ ( ( ) ( ) 1BI<ko
@ By assumption there are multi-indices a?,...,a" 1 ¢ Ng such that
the matrix
awal 8\Uan/+1
oz’ 9z

is invertible at (h(0,0,0), (L7h(0,0,0))51<k,)-

@ Using the (smooth) implicit function theorem to “solve” the equation
V(Z',N) =0, (V= (Vu,...,¥_»1)) in a “particular” way we can
show that there is a smooth mapping ¢ : C"*+! x CK — C'+1
defined near (0, (LﬁE(O))wSkO) such that (by (6))

h(xy.s) =4 <h(x’y’s)’ (LBE(X’y’ s))lﬁlék0>

and the following holds:
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Sketch of proof

First, ¢ is holomorphic in the last K variables. Recall that by assumption
of the theorem we have that

@ there is a smooth extension H of hon U x | x (0,¢), U C R2n,
I C R, which is {9t}-almost analytic in the last variables s + it.

@ Hence h extends to an {M1}-almost analytic mapping h on
Ux 1 x(—¢,0).

o Similarly, for each 3 € N, LPh extends to a {9M}-almost analytic
mapping Hg on U x | x (—¢,0).
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Sketch of proof

First, ¢ is holomorphic in the last K variables. Recall that by assumption
of the theorem we have that
@ there is a smooth extension H of hon U x | x (0,¢), U C R2n,
I C R, which is {9t}-almost analytic in the last variables s + it.
@ Hence h extends to an {M1}-almost analytic mapping h on
Ux 1 x(—¢,0).
@ Similarly, f~or each § € Ng, LPh extends to a {M}-almost analytic
mapping Hg on U x | x (—¢,0).
Then we can show that

G(X,_y75, t) = w (H(X,Y,S, _t)7 (I:IB(X’y’S’ t)>|ﬁ|<ko>

is {M}-almost analytic on U x | x (—¢,0).
(We may have to shrink U,/ and ¢.)
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Sketch of proof

¢—1

It follows that

n’+1
WFany Blo = | WFany b € ({0} x {o > 0}) N ({0} x {o < 0}) =0
j=1
n’+1
= 0¢ sing suppyoy h = U sing suppyoxy hj.
Jj=1
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Outlook

In two papers B. Lamel and N. Mir (2018/2020) approached the problem
of regularity from a different point of view:
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In two papers B. Lamel and N. Mir (2018/2020) approached the problem
of regularity from a different point of view:

Let h: M — M’ be a CR map. When is h not smooth (or
ultradifferentiable) on an open subset of M?
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Outlook

In two papers B. Lamel and N. Mir (2018/2020) approached the problem
of regularity from a different point of view:

Let h: M — M’ be a CR map. When is h not smooth (or
ultradifferentiable) on an open subset of M?

In order to present one of their theorems we need some definitions:
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Outlook

In two papers B. Lamel and N. Mir (2018/2020) approached the problem
of regularity from a different point of view:

Let h: M — M’ be a CR map. When is h not smooth (or
ultradifferentiable) on an open subset of M?

In order to present one of their theorems we need some definitions:
Definition

A CR mapping H : M — M’ is strictly noncharacteristic if

H (ThM') = TeM  Vpe M.
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D’Angelo finite type

Let M C C"*! be a real hypersurface, p € M and p a local defining
function of M near p. We set

AMp) =  suip 22D o
y:D—C"+! UO(’Y)
¥(0)=p,v#p

Here D C C is the unit disc, vo(7) is the vanishing order of v at 0.
Definition

We say that M is of finite type at p if A(M, p) < oco.

If A(M, p) = oo then M is of infinite type at p.

Im:={peM : A(M,p)=occ} C M.
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Geometric conditions for regularity

Theorem (Lamel-Mir 2018)

Let M C C™1, M’ C C"+1 be real hypersurfaces with ' > n > 1.
Suppose that:

@ M and M’ are of class C*°.
o M is strongly pseudoconvex.

@ There is a strongly non-characteristic map H : M — M’ of class
Cn’—n—I—l_

Then

H ((sing SUppcoo H) O> C Iy
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Geometric conditions for regularity

Theorem (F.—Lamel 2025)

Let M C C™1, M’ C C"+1 be real hypersurfaces with ' > n > 1.
Suppose that:

o M and M’ are of class {9}, 9 being normal.
o M is strongly pseudoconvex.

@ There is a strongly non-characteristic map H : M — M’ of class
Cn’—n—I—l_

Then

H ((sing SUPP o} H)o) C .

Stefan Firdés (Vienna) Regularity of CR mappings

28/29



Thank you for your attention!
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