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Joint work with Kevin Agneessens.

At Málaga (2006), Bonilla and G-E posed a problem on the dynamics
of the differentiation operator on the space of entire functions.

The problem was solved by Drasin and Saksman (2012).

A weaker solution was given by Nikula (2014), using a probabilistic
approach, which was further developped by Mouze and Munnier
(2014).

This has motivated our work.
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Wiman-Valiron theory
Let

f (z) =
∞∑

n=0

anzn, z ∈ C

be an entire function.

It is well known that the order and the type of the function f can be
expressed precisely in terms of the coefficients an, n ≥ 0.

A finer study of the relationship between the growth of f and the
coefficients an is undertaken in the Wiman-Valiron theory (1914-18).
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Wiman-Valiron theory
One of the corner-stones of the Wiman-Valiron theory is the
Wiman-Valiron inequality, which says that, for any δ > 0

max
|z|=r

|f (z)| ≤ µf (r)
(
logµf (r)

) 1
2+δ

for all r ≥ 0 outside some small exceptional set E , where

µf (r) = sup
n≥0

|an|rn maximum term.

Here, the set E ⊂ [0,∞) is of finite logarithmic measure, that is∫
E∩[1,∞)

1
r

dr < ∞.
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Wiman-Valiron theory

Example
Take

f (z) = ez =
∞∑

n=0

1
n!

zn

with max
|z|=r

|f (z)| = er .

Wiman-Valiron: |an|rn = rn

n! has its maximum at n = ⌊r⌋, so

µf (r) = max
n≥0

|an|rn =
r ⌊r⌋

⌊r⌋!
∼Stirling

er
√

r
,

and hence, for any δ > 0,

max
|z|=r

|f (z)| ≤ µf (r)
(
logµf (r)

) 1
2+δ ∼ er r δ

outside some exceptional set E .
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Probabilistic Wiman-Valiron theory
In 1930, Lévy studied random entire functions

∞∑
n=0

anXnzn,

where (Xn)n≥0 is an independent sequence of random variables
uniformly distributed on the unit circle T (Steinhaus variables).

Then, for any δ > 0, almost surely

max
|z|=r

∣∣∣ ∞∑
n=0

anXnzn
∣∣∣ ≤ µf (r)

(
logµf (r)

) 1
4+δ

outside some small exceptional set E .

Thus, randomizing the coefficients lowers the exponent 1
2 in the

Wiman-Valiron inequality to 1
4 : Lévy’s phenomenon (Kuryliak et al.

2014).
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Probabilistic Wiman-Valiron theory

Example
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f (z) = ez =
∞∑

n=0

1
n!

zn.

Then we have by Lévy, for any δ > 0, almost surely,
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n!
zn
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Finer methods show that this holds for all large r > 0 and with C
√
log r

instead of r δ (Nikula 2014).
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Probabilistic Wiman-Valiron theory
Now, Rosenbloom (1962) improved the (deterministic) Wiman-Valiron
inequality: for any δ > 0,

max
|z|=r

|f (z)| ≤ µf (r)
(
logµf (r)

) 1
2
(
log log µf (r)

)1+δ

for all r ≥ 0 outside some small exceptional set E.

Independently of Lévy, Erdős and Rényi (1969) showed that if (Xn)n is
independent and uniformly {−1,+1}-distributed (Rademacher
variables) then, for any δ > 0, almost surely

max
|z|=r

∣∣∣ ∞∑
n=0

anXnzn
∣∣∣ ≤ µf (r)

(
logµf (r)

) 1
4
(
log logµf (r)

)1+δ

for all r ≥ 0 outside some small exceptional set E.

Again, we observe Lévy’s phenomenon.

Karl Grosse-Erdmann (UMons) Random entire functions Pepe 70 9 / 17



Probabilistic Wiman-Valiron theory
Now, Rosenbloom (1962) improved the (deterministic) Wiman-Valiron
inequality: for any δ > 0,

max
|z|=r

|f (z)| ≤ µf (r)
(
logµf (r)

) 1
2
(
log log µf (r)

)1+δ

for all r ≥ 0 outside some small exceptional set E.
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Probabilistic Wiman-Valiron theory
Since the mid-1990’s there is a school of mathematicians at Lviv
(Ukraine) who work on the Wiman-Valiron inequality and its random
versions:

Oleg B. Skaskiv, Andrii O. Kuryliak, . . .

Question (Skaskiv (Kuryliak 2017))
Does Levi’s phenomenon hold in the case of unbounded random
variables?

An answer is also essential for our application in linear dynamics.

Karl Grosse-Erdmann (UMons) Random entire functions Pepe 70 10 / 17



Probabilistic Wiman-Valiron theory
Since the mid-1990’s there is a school of mathematicians at Lviv
(Ukraine) who work on the Wiman-Valiron inequality and its random
versions:

Oleg B. Skaskiv, Andrii O. Kuryliak, . . .

Question (Skaskiv (Kuryliak 2017))
Does Levi’s phenomenon hold in the case of unbounded random
variables?

An answer is also essential for our application in linear dynamics.

Karl Grosse-Erdmann (UMons) Random entire functions Pepe 70 10 / 17



Main result
As an answer to Skaskiv’s question, Kuryliak (2017) extended the
Erdős-Rényi inequality to centred subgaussian random variables
(which include all bounded variables and all Gaussian variables),
however at a certain price:

max
|z|=r

∣∣∣ ∞∑
n=0

anXnzn
∣∣∣ ≤ µf (r)

(
logµf (r)

) 1
4
(
log logµf (r)

) 3
2+δ

Here is our main result:

Theorem (Agneessens, G-E)
Let (Xn)n≥0 be an i.i.d. sequence of centred subgaussian random
variables. Then, for every δ > 0, almost surely,

max
|z|=r

∣∣∣ ∞∑
n=0

anXnzn
∣∣∣ ≤ µf (r)

(
logµf (r)

) 1
4
(
log logµf (r)

)1+δ

outside a set E ⊂ [0,∞) of finite logarithmic measure.
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Main result
The proof uses all the usual ingredients already present in the work of
Erdős-Rényi and the Ukrainian school.

However, we follow Erdős-Rényi in looking first for an estimate
involving

Sf (r) =
( ∞∑

n=0

|an|2r2n
)1/2

instead of
µf (r) = sup

n≥0
|an|rn.

We have also corresponding results for functions on the unit disk.
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Application in Linear Dynamics
Consider the derivative operator on the space H(C) of entire functions:

D : H(C) → H(C), f → f ′.

The operator is known to be

• hypercyclic (has a dense orbit)

• chaotic (hypercyclic with a dense set of periodic points)

• frequently hypercyclic (some orbit meets every open set often) –

here, f ∈ H(C) is frequently hypercyclic if, for any non-empty open set
U ⊂ H(C),

dens{n ≥ 0 : Dnf ∈ U} > 0.
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Application in Linear Dynamics
How fast can a frequently hypercyclic entire function for D grow?

Drasin and Saksman (2012) showed that there is a frequently
hypercyclic entire function f for D with

max
|z|=r

|f (z)| ≤ C
er

r
1
4

, r > 0,

and that’s optimal (Blasco, Bonilla, G-E 2010). Nikula (2014) obtained
the Drasin-Saksman result with an additional factor of

√
log r .

Now, note that D is a weighted shift operator:

D :
∞∑

n=0

anzn →
∞∑

n=0

(n + 1)an+1zn.
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Application in Linear Dynamics
More generally, consider any weighted shift operator on H(C):

Bw :
∞∑

n=0

anzn →
∞∑

n=0

wn+1an+1zn.

It is well known that Bw is chaotic if and only if
∞∑

n=0

1
w1...wn

zn

is an entire function. Randomizing this sequence gives us frequently
hypercyclic vectors!

Theorem (Agneessens, G-E)
Let Bw be a chaotic weighted shift on H(C) and (Xn)n≥0 an i.i.d.
sequence of subgaussian random variables of full support. Then

∞∑
n=0

Xn
w1...wn

zn

is almost surely frequently hypercyclic for Bw .
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Corollary (Agneessens, G-E)
Let Bw be a chaotic weighted shift on H(C) and (Xn)n≥0 an i.i.d.
sequence of centred subgaussian random variables of full support.
Then

∞∑
n=0

Xn
w1...wn

zn

is almost surely frequently hypercyclic for Bw . Moreover, for every
δ > 0, almost surely,

max
|z|=r

∣∣∣ ∞∑
n=0

Xn

w1 . . .wn
zn

∣∣∣ ≤ µf (r)
(
logµf (r)

) 1
4
(
log logµf (r)

)1+δ

outside a set E ⊂ [0,∞) of finite logarithmic measure such that.

Here, f (z) =
∑∞

n=0
1

w1...wn
zn.

For particular weighted shifts, growth rates for all large r are known
(Bernal-Bonilla, Agneessens,. . . )
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sequence of centred subgaussian random variables of full support.
Then

∞∑
n=0

Xn
w1...wn

zn

is almost surely frequently hypercyclic for Bw . Moreover, for every
δ > 0, almost surely,

max
|z|=r

∣∣∣ ∞∑
n=0

Xn

w1 . . .wn
zn

∣∣∣ ≤ µf (r)
(
logµf (r)

) 1
4
(
log logµf (r)

)1+δ

outside a set E ⊂ [0,∞) of finite logarithmic measure such that.

Here, f (z) =
∑∞

n=0
1

w1...wn
zn.

For particular weighted shifts, growth rates for all large r are known
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