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Pontryagin-van Kampen duality
For a topological abelian group G , we will denote by Ĝ the set of
continuous homomorphisms ϕ : G → T , which we will refer to also
as the continuous characters of G .

Ĝ becomes a topological group by defining
(ϕ1ϕ2)(g) := ϕ1(g)ϕ2(g) ∈ T whenever g ∈ G and equipping it
with the compact-open topology.

We call Ĝ the dual group of G . The symbol Gd will denote the
group G endowed with the discrete topology; thus Ĝd consists of
all characters on G .

Theorem [Pontryagin, 1934; van Kampen, 1935/6]

If G is locally compact and Abelian, Ĝ is also locally compact and

Abelian and G ∼= ̂̂
G .

Pontryagin-van Kampen Theorem and, with more generality,
duality methods are very effective the study of topological abelian
groups.
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continuous homomorphisms ϕ : G → T , which we will refer to also
as the continuous characters of G .
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Bohr Compactification

Definition

The Bohr compactification of an arbitrary topological group G is a
pair (bG , b) where bG is a compact Hausdorff group and b is a
continuous homomorphism from G onto a dense subgroup of bG
with the following universal property:

G
b //

h

��

bG
hb

}}
K

The group bG is called the Bohr compactification of G .

The topology that G receives from bG is called Bohr topology.
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Bohr Compactification

There are several definitions of the Bohr compactification:
(1) Consider the commutative Banach algebra with unity
(AP(G ), ∥ · ∥∞). Then bG is the Gel’fand space associated to this
algebra.

(2) Take the continuous homomorphisms

h : G −→ Kh (Kh is a compact group)

and the evaluation mapping

e : G ↪→
∏
h∈H

Kh

(taking care of the cardinality of H)
then

bG ∼= cl∏Kh
e(G )
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Bohr compactification

(3) Finally, we may define the supreme of all precompact
topologies on G which are coarser than the original topology of the
group. This equips G with a precompact topology (the Bohr
topology) whose completion is bG .

Definition

A topological group G is said to be a maximally almost periodic
(MAP) group if the Bohr homomorphism b : G → bG is injective.
This means: Whenever g ∈ G and g ̸= eG ∈ G , there exists a
continuous homomorphism ϕ of G into a compact group, say Kg ,
such that ϕ(g) ̸= e ∈ Kg .

An Abelian topological group is MAP if and only if whenever
g ∈ G and g ̸= 0 ∈ G , there exists a continuous homomorphism
ϕ : G → T such that ϕ(g) ̸= 0 ∈ T .

The Gel’fand-Rǎıkov Theorem implies that locally compact Abelian
groups (LCAGs) are MAP
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Bohr compactification

For abelian groups, the duality theory permits us to represent the
Bohr compactification as a group of homomorphisms:

if G is a topological abelian group and (Ĝ )d denotes its dual group
equipped with the discrete topology then bG is topologically

isomorphic to (̂Ĝ )d the dual group of (Ĝ )d .

The Bohr topology of an Abelian discrete group G can be realized
as the weak topology induced on G by the group Hom(G ,T ) of
homomorphisms from G into the usual circle group T .

It coincides with the largest totally bounded group topology of the
group.
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The Bohr topology of an Abelian discrete group G can be realized
as the weak topology induced on G by the group Hom(G ,T ) of
homomorphisms from G into the usual circle group T .

It coincides with the largest totally bounded group topology of the
group.



Motivation

Suppose an algebraic group G is equipped with two locally
compact topologies G1 = (G , τ1) and G2 = (G , τ2). In case G is
abelian,we have that G1 and G2 are (naturally) isomorphic if and
only if so are their respective Bohr compactifications bG1 and bG2.

Furthermore, if τ1 ⊊ τ2, then |bG2
bG1

| ≥ 2c.

Therefore the Bohr compactification of a locally compact abelian
group completely characterizes its topological and algebraic
structure.

It is known that this fact do not extend to non abelian groups and
basically every option is possible for these groups.

Here we are interested in studying to what extent the Bohr
compactification of a non abelian locally compact group reflects its
topological and algebraic structure.
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non-Abelian groups

It is well known that the Bohr topology of a discrete abelian group
contains no nontrivial convergent sequence. This fact cannot be
extended to non-Abelian groups.

Example (Heisenberg group)

Let H be the Heisenberg integral group

H =


1 a b
0 1 c
0 0 1

 : a, b, c ∈ Z


We have: for all x , y in H, the sequence {[xn!, yn!]} converges to
the neutral element in the Bohr topology.
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non-Abelian groups

Example (lamplighter group)

Let G be (
∑

Z Z/2Z)⋊ Z (the group is known as the wreath
product (Z/2Z) ≀ Z ).

Then bG is topologically isomorphic to the group∑
Z Z/2Z

bG ⋊ bZ

where the group
∑

Z Z/2Z
bG

is metrizable. Therefore, there are
many non-trivial Bohr convergent sequences in G .
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non-Abelian groups

Another example of this sort is due to Moran

Example (Moran, 1971)

Let {pi} be an infinite sequence of distinct prime numbers
(pi > 2), and let Fi be the projective special linear group of
dimension two over the Galois field GF (pi ) of order pi . If
G =

∑
i∈N Fi then bGd =

∏
n∈N Fn.

Even more surprisingly is that several authors have considered the
so-called self-bohrifying groups.
That is, compact groups G such that bGd = G .
In this direction, van der Waerden (1933) had proved that compact
connected semisimple Lie groups have this property.

Many more examples and properties of these groups were found by
Hart and Kunen (2011).
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Unitary representations of locally compact groups

A unitary representation σ of the (topological) group G is a
(continuous) homomorphism into the group of all linear isometries
of a complex Hilbert space Hσ, the so called unitary group U(Hσ).

Here, the unitary group U(Hσ) is equipped with the weak (equiv.,
strong) operator topology. Hence σ is continuous if for every
u, v ∈ Hσ, the matrix coefficient function g 7→ ⟨σ(g)u, v⟩ is a
continuous map of G into the complex plane.

A linear subspace E ⊆ H is an invariant subspace for S ⊆ U(H) if
ME ⊆ E for all M ∈ S. If there is a subspace E with
{0} & E ⫋ H which is invariant for S, then S is called reducible;
otherwise S is irreducible.

An irreducible representation (irrep) of G is a continuous unitary
representation σ such that ran(σ) is irreducible.
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Unitary representations of locally compact groups

Given a locally compact group G , we denote by irrep(G ) the set of
all irreducible unitary representations σ defined on G .

Two unitary representations σ : G → U(Hσ) and ρ : G → U(Hρ)
are equivalent (ρ ∼ ψ) if there exists a unitary operator
M : Hσ → Hρ such that ρ(x) = M−1ψ(x)M for all x ∈ G .

The dual object of G is the set Ĝ of equivalence classes of
irreducible unitary representations of G .

In this talk we shall just be concerned with finite dimensional
representations.
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Unitary representations of locally compact groups

Denote by repn(G ) the set of all continuous n-dimensional unitary
representations of a topological group G , i. e., the set of all
continuous homomorphisms of G into the unitary group U(n),
equipped with the compact-open topology.

It is known that repn(G ) is a locally compact and uniformizable
space and the space rep(G ) = ⊔n<ωrepn(G ) (as a topological
sum) is called the Chu dual of G .

Set G x
n = repn(G)

∼ as the set of equivalence classes of unitary
representations of dimension n equipped with the quotient
topology. The partial dual of G is defined by Ĝn = irrepn(G)

∼ .

It is easily seen that if G is a compact group then each partial dual
space G x

n is uniformly discrete.
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Characterization of self-bohrifying groups

A topological group G is tall if for each positive integer n there are
only finitely many classes [ρ] ∈ Ĝn.

We have the following
remarkable characterization of self-borifying groups.

Proposition

Let G be a compact group and let Gd be the same algebraic group
equipped with the discrete topology. The following assertions are
equivalent:

1 Gd is tall.

2 G is self-bohrifying.

3 (̂Gd)n ∪ {1G} is discrete for all n ∈ N.
4 G is a vdW -group (every group homomorphism of G into a

compact group is continuous).
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Unitary (Chu) duality

Recall that if A : Cm → Cm and B : Cn → Cn are linear operators,
then A⊕ B : Cm+n → Cm+n denotes the direct sum, and
A⊗ B : Cmn → Cmn denotes the tensor product, of A and B,
respectively.

Thus, we can define the following operations on rep(G )

1. (D ⊕ D ′)(x) = D(x)⊕ D ′(x), D,D ′ ∈ rep(G )
and x ∈ G ;

2. (D ⊗ D ′)(x) = D(x)⊗ D ′(x), D,D ′ ∈ rep(G )
and x ∈ G ;

3. (U−1DU)(x) = U−1D(x)U, D ∈ repn(G ),
U ∈ U(n) and x ∈ G .



Unitary (Chu) duality

Recall that if A : Cm → Cm and B : Cn → Cn are linear operators,
then A⊕ B : Cm+n → Cm+n denotes the direct sum, and
A⊗ B : Cmn → Cmn denotes the tensor product, of A and B,
respectively.

Thus, we can define the following operations on rep(G )

1. (D ⊕ D ′)(x) = D(x)⊕ D ′(x), D,D ′ ∈ rep(G )
and x ∈ G ;

2. (D ⊗ D ′)(x) = D(x)⊗ D ′(x), D,D ′ ∈ rep(G )
and x ∈ G ;

3. (U−1DU)(x) = U−1D(x)U, D ∈ repn(G ),
U ∈ U(n) and x ∈ G .



Unitary (Chu) duality

Recall that if A : Cm → Cm and B : Cn → Cn are linear operators,
then A⊕ B : Cm+n → Cm+n denotes the direct sum, and
A⊗ B : Cmn → Cmn denotes the tensor product, of A and B,
respectively.

Thus, we can define the following operations on rep(G )

1. (D ⊕ D ′)(x) = D(x)⊕ D ′(x), D,D ′ ∈ rep(G )
and x ∈ G ;

2. (D ⊗ D ′)(x) = D(x)⊗ D ′(x), D,D ′ ∈ rep(G )
and x ∈ G ;

3. (U−1DU)(x) = U−1D(x)U, D ∈ repn(G ),
U ∈ U(n) and x ∈ G .



Unitary (Chu) duality

A quasi-representation of G is a mapping Q : rep(G ) −→ U with
the following properties:

1. Q[repn(G )] ⊂ U(n);
2. Q(D ⊕ D ′) = Q(D)⊕ Q(D ′), D,D ′ ∈ rep(G );
3. Q(D ⊗ D ′) = Q(D)⊗ Q(D ′), D,D ′ ∈ rep(G );
4. Q(U−1DU) = U−1Q(D)U, D ∈ repn(G ),

U ∈ U(n).

The set of all continuous quasi-representations of G equipped with
the compact-open topology is a topological group with pointwise
multiplication as composition law, called the Chu quasi-dual group
(bidual group, for short) of G and denoted by G xx .
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Unitary (Chu) duality

The evaluation mapping E : G → G xx is a group homomorphism
which is a monomorphism if and only if G is MAP.

The topology that G receives from G xx is called Chu topology

Definition

We say that the locally compact group G satisfies Chu duality
when the evaluation mapping E is an isomorphism of topological
groups (Chu, 1966).
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Chu quasi dual versus Bohr compactification

We are interested on determining when the Chu quasi-dual G xx of
a locally compact group G coincides with its Bohr compactification
bG .

The first contributions related to Chu duality have been given by
Chu, Heyer, Moran, Poguntke, and Roeder. However, we shall just
mention here two more recent results.

Theorem (H. and Wu, 2006)

Let G =
∑

i∈I Fi , where Fi is a finite simple non-abelian group for
each i ∈ I . Then the group G is Chu if and only if the set
{exp(Fi ) : i ∈ I} is bounded.

Theorem (A. Thom, 2013)

A finitely generated group satisfies Chu duality if, and only if, it is
virtually abelian.
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New results

Theorem (Ferrer and H., 2025)

Let G be a locally compact group. It holds that G xx is
topologically isomorphic to bG if and only if the space G x

n is
discrete for any n ∈ N.

Is it possible to replace G x
n by Ĝn in the theorem above?.

Theorem (Ferrer and H., 2025))

Let H be a finite simple non abelian group, let I be an infinite
index set and consider the discrete group G = H(I ). Then G is
Chu reflexive and Ĝn is a discrete topological space for all n ∈ N.

Theorem (Ferrer and H., 2025)

Let G be a discrete group. Then G xx is topologically isomorphic to
bG if and only if the space Ĝn is finite for any n ∈ N.
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