

Surjectivity of the asymptotic Peano-Borel map

(in Carleman ultraholomorphic classes defined by
weight sequences with shifted moments)

Javier Jiménez-Garrido (Univ. Cantabria)
joint work with
I. Miguel-Cantero (Univ. Valladolid),
J. Sanz (Univ. Valladolid),
G. Schindl (Univ. Vienna).

June 2025 - WFAJB70, Valencia, Spain

WFAV 2015

WFAV 2015

WFAV 2015

- J. Jiménez-Garrido, I. Miguel-Cantero, J. Sanz, G. Schindl, Surjectivity of the asymptotic Borel map in Carleman ultraholomorphic classes defined by sequences with shifted moments, arXiv:2505.09444
- J. Jiménez-Garrido, I. Miguel-Cantero, J. Sanz, G. Schindl, Stability properties of ultraholomorphic classes of Roumieu-type defined by weight matrices, *Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM* **118** (2024).
- J. Jiménez-Garrido, D. N. Nenning and G. Schindl, On generalized definitions of ultradifferentiable classes, *J. Math. Anal. Appl.* **526** (2023).
- J. Jiménez-Garrido, I. Miguel-Cantero, J. Sanz, G. Schindl, Optimal flat functions in Carleman-Roumieu ultraholomorphic classes in sectors, *Results Math.* (2023).
- J. Jiménez-Garrido, J. Sanz and G. Schindl, Equality of ultradifferentiable classes by means of indices of mixed O-regular variation, *Results Math.* **77** (2022).
- J. Jiménez-Garrido, J. Sanz and G. Schindl, Surjectivity of the asymptotic Borel map in Carleman-Roumieu ultraholomorphic classes defined by regular sequences, *Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM* **115** (2021).
- J. Jiménez-Garrido, J. Sanz and G. Schindl, Sectorial extensions for ultraholomorphic classes defined by weight functions, *Math. Nachr.* **293** (2020)
- J. Jiménez-Garrido, J. Sanz and G. Schindl, A Phragmén-Lindelöf theorem via proximate orders, and the propagation of asymptotics, *J. Geom. Anal.* **30** (2020).
- J. Jiménez-Garrido, J. Sanz and G. Schindl, Ultraholomorphic extension theorems in the mixed setting, *Banach J. Math. Anal.* **14** (2020).
- J. Jiménez-Garrido, J. Sanz and G. Schindl, The surjectivity of the Borel mapping in the mixed setting for ultradifferentiable ramification spaces, *Monatsh. Math.* **191** (2020).
- J. Jiménez-Garrido, J. Sanz and G. Schindl, Indices of O-regular variation for weight functions and weight sequences, *Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM* **113** (2019).
- J. Jiménez-Garrido, J. Sanz and G. Schindl, Sectorial extensions, via Laplace transforms, in ultraholomorphic classes defined by weight functions, *Results Math.* **74** (2019).
- J. Jiménez-Garrido, J. Sanz and G. Schindl, Injectivity and surjectivity of the asymptotic Borel map in Carleman ultraholomorphic classes, *J. Math. Anal. Appl.* **469** (2019).
- J. Jiménez-Garrido, J. Sanz and G. Schindl, Log-convex sequences and nonzero proximate orders, *J. Math. Anal. Appl.* **448** (2017).

Surjectivity of the asymptotic Peano-Borel map

(in Carleman ultraholomorphic classes defined by
weight sequences with shifted moments)

Javier Jiménez-Garrido (Univ. Cantabria)
joint work with
I. Miguel-Cantero (Univ. Valladolid),
J. Sanz (Univ. Valladolid),
G. Schindl (Univ. Vienna).

June 2025 - WFAJB70, Valencia, Spain

Weight sequences and sectors

$\mathbf{M} = (M_n)_{n=0}^\infty$ is a sequence of positive real numbers with $M_0 = 1$.

\mathbf{M} is a **weight sequence (w.s.)**: if \mathbf{M} is **logarithmically convex (lc)**, i.e., for all $n \in \mathbb{N}_{\geq 1}$: $M_n^2 \leq M_{n-1} M_{n+1}$, and if $\lim_{n \rightarrow \infty} M_n^{1/n} = \infty$.

The **sequence of quotients** is $\mathbf{m} = (m_n := M_{n+1}/M_n)_{n=0}^\infty$.

\mathbf{M} is w.s. if and only if \mathbf{m} is nondecreasing and $\lim_{n \rightarrow \infty} m_n = \infty$.

\mathcal{R} stands for the Riemann surface of the logarithm. For $\gamma > 0$, we write $S_\gamma := \{z \in \mathcal{R} : |\arg(z)| < \frac{\gamma\pi}{2}\}$ and we write S for any sector.

Uniform M -asymptotic expansion

Given $h > 0$, we say that $f \in \mathcal{H}(S)$ admits $\widehat{f} = \sum_{k \geq 0} a_k z^k \in \mathbb{C}[[z]]$ as its **uniform M -asymptotic expansion in S (of type $1/h$)** if

$$\exists C > 0 : \forall n \geq 0, \forall z \in S, \left| f(z) - \sum_{k=0}^{n-1} a_k z^k \right| \leq C h^n M_n |z|^n.$$

The space of functions admitting uniform M -asymptotic expansion of type $1/h$ in S is denoted by $\tilde{\mathcal{A}}_{M,h}^u(S)$ and it is endowed with the norm

$$\|f\|_{M,h,\tilde{u}} := \sup_{z \in S, n \geq 0} \frac{|f(z) - \sum_{k=0}^{n-1} a_k z^k|}{h^n M_n |z|^n},$$

which makes it a Banach space.

Carleman classes

Given $h > 0$, we say that $f \in \mathcal{H}(S)$ belongs to the class $\mathcal{A}_{M,h}(S)$ if

$$\|f\|_{M,h} := \sup_{z \in S, n \geq 0} \frac{|f^{(n)}(z)|}{h^n M_n} < \infty,$$

and $(\mathcal{A}_{M,h}(S), \|\cdot\|_{M,h})$ is a Banach space

Given $h > 0$, the class of **formal power series** is defined by

$$\mathbb{C}[[z]]_{M,h} = \left\{ \widehat{f} = \sum_{n=0}^{\infty} a_n z^n \in \mathbb{C}[[z]] : \left| \widehat{f} \right|_{M,h} := \sup_{n \geq 0} \frac{|a_n|}{h^n M_n} < \infty \right\},$$

and $(\mathbb{C}[[z]]_{M,h}, |\cdot|_{M,h})$ is a Banach space

Spaces of Roumieu and Beurling type

We will consider the **Roumieu-type** spaces,

$$\tilde{\mathcal{A}}_{\{\mathbf{M}\}}^u(S) := \bigcup_{h>0} \tilde{\mathcal{A}}_{\mathbf{M},h}^u(S),$$

and, similarly, $\mathcal{A}_{\{\mathbf{M}\}}(S)$ and $\mathbb{C}[[z]]_{\{\mathbf{M}\}}$, which are (LB) spaces.

We will also consider the **Beurling-type** spaces

$$\tilde{\mathcal{A}}_{(\mathbf{M})}^u(S) := \bigcap_{h>0} \tilde{\mathcal{A}}_{\mathbf{M},h}^u(S),$$

and, similarly, $\mathcal{A}_{(\mathbf{M})}(S)$ and $\mathbb{C}[[z]]_{(\mathbf{M})}$ which are Fréchet spaces.

We write $\mathcal{A}_{[\mathbf{M}]}(S)$, $\tilde{\mathcal{A}}_{[\mathbf{M}]}^u(S)$ or $\mathbb{C}[[z]]_{[\mathbf{M}]}$, when a statement is valid for both Roumieu type and Beurling type.

Asymptotic Peano-Borel map

Let \mathbf{M} be a sequence, $\widehat{\mathbf{M}} = (n!M_n)_{n=0}^{\infty}$, $h > 0$, and S be a sector.

- (a) The inclusion map $\mathcal{A}_{\widehat{\mathbf{M}},h}(S) \hookrightarrow \widetilde{\mathcal{A}}_{\mathbf{M},h}^u(S)$ is continuous.
Consequently, $\mathcal{A}_{[\widehat{\mathbf{M}}]}(S) \hookrightarrow \widetilde{\mathcal{A}}_{[\mathbf{M}]}^u(S)$ is continuous.
- (b) If T is a proper subsector of S , then there exists $c = c_{T,S} > 0$, such that the restriction map from $\widetilde{\mathcal{A}}_{\mathbf{M},h}^u(S)$ to $\mathcal{A}_{\widehat{\mathbf{M}},ch}(T)$ is continuous and it is also continuous from $\widetilde{\mathcal{A}}_{[\mathbf{M}]}^u(S)$ to $\mathcal{A}_{[\widehat{\mathbf{M}}]}(T)$.

The **asymptotic Peano-Borel map** $\widetilde{\mathcal{B}}$ sends a function $f \in \widetilde{\mathcal{A}}_{\mathbf{M},h}^u(S)$ into its \mathbf{M} -asymptotic expansion $\widehat{f} \in \mathbb{C}[[z]]_{\mathbf{M},h}$.

So $\widetilde{\mathcal{B}}$ may be defined from $\widetilde{\mathcal{A}}_{[\mathbf{M}]}^u(S)$ or $\mathcal{A}_{[\widehat{\mathbf{M}}]}(S)$ into $\mathbb{C}[[z]]_{[\mathbf{M}]}$ and it is continuous when considered between the corresponding (LB), Fréchet or Banach spaces.

Surjectivity intervals

The **surjectivity intervals** defined by

$$S_{[\widehat{M}]} := \{\gamma > 0 : \tilde{\mathcal{B}} : \mathcal{A}_{[\widehat{M}]}(S_\gamma) \longrightarrow \mathbb{C}[[z]]_{[M]} \text{ is surjective}\},$$

$$\tilde{S}_{[M]}^u := \{\gamma > 0 : \tilde{\mathcal{B}} : \tilde{\mathcal{A}}_{[M]}^u(S_\gamma) \longrightarrow \mathbb{C}[[z]]_{[M]} \text{ is surjective}\}.$$

are either empty or left-open intervals having 0 as endpoint,

We have that $(\tilde{S}_{[M]}^u)^\circ \subseteq S_{[\widehat{M}]} \subseteq \tilde{S}_{[M]}^u$.

Linear and continuous operators right inverses for the asymptotic Borel map are called **extension operators**.

They can be **global**, defined from $\mathbb{C}[[z]]_{[M]}$ into $\tilde{\mathcal{A}}_{[M]}^u(S)$ or $\mathcal{A}_{[\widehat{M}]}(S)$ (with their respective (LB) or Fréchet space structures), or **local**, at the level of Banach spaces, defined from $\mathbb{C}[[z]]_{M,h}$ into some $\tilde{\mathcal{A}}_{M,h'}^u(S)$ or $\mathcal{A}_{\widehat{M},h'}(S)$ for suitable h' depending on h .

Additional conditions

We say M and L are **equivalent**, denoted $M \approx L$, if there exist $h_1, h_2 > 0$ such that for all $n \geq 0$: $h_1^{n+1}L_n \leq M_n \leq h_2^{n+1}L_n$.

If $M \approx L$, then the corresponding classes coincide.

M is **derivation closed (dc)** if

$$\exists C_0 > 0, \exists H > 1 : \forall n \geq 0, \quad M_{n+1} \leq C_0 H^{n+1} M_n.$$

M has **moderate growth (mg)** if

$$\exists C_0 > 0, \exists H > 1 : \forall n, k \geq 0, \quad M_{n+k} \leq C_0 H^{n+k} M_n M_k.$$

Conditions (dc) and (mg) are preserved under equivalence.

If M has (mg), then M is (dc).

Gamma index

For a w.s. \mathbf{M} , Thilliez's **gamma index** is given by

$$\gamma(\mathbf{M}) = \sup\{\gamma > 0 : (m_n/(n+1)^\gamma)_{n=0}^\infty \text{ is almost increasing}\} \in [0, \infty].$$

Given $\beta > 0$, we say that \mathbf{m} satisfies the **(Schmets-Valdivia) condition (γ_β)** if there exists $A > 0$ such that for all $n \geq 0$:

$$\sum_{\ell=n}^{\infty} \frac{1}{(m_\ell)^{1/\beta}} \leq \frac{A(n+1)}{(m_n)^{1/\beta}}.$$

[J.J.-G., J. Sanz, G. Schindl (2019)] For any w.s. \mathbf{M} , we have that

$$\gamma(\mathbf{M}) > \beta \iff \mathbf{m} \text{ satisfies } (\gamma_\beta).$$

In fact, $\gamma(\mathbf{M})$ is the lower Matuszewska index of \mathbf{m} .

Conjecture

Let \mathbf{M} be a weight sequence.

(a) If $\gamma(\mathbf{M}) = 0$, then $S_{[\widehat{\mathbf{M}}]} = \tilde{S}_{[\mathbf{M}]}^u = \emptyset$.

[H.-J. Petzsche (1988), V. Thilliez (2003), J.J.-G., J. Sanz, G. Schindl (2019)]

(b) If $\gamma(\mathbf{M}) = \infty$, then $S_{[\widehat{\mathbf{M}}]} = \tilde{S}_{[\mathbf{M}]}^u = (0, \infty)$ and there exist global extension operators for any opening $\gamma > 0$.

[J. Schmets, M. Valdivia (2000), J.J.-G., J. Sanz, G. Schindl (2021)]

Conjecture (Roumieu): Let \mathbf{M} be a w.s. with $\gamma(\mathbf{M}) \in (0, \infty)$, then

$$S_{\{\widehat{\mathbf{M}}\}} = \tilde{S}_{\{\mathbf{M}\}}^u = (0, \gamma(\mathbf{M})).$$

Known results in the Roumieu case

Additional assumptions	Information
\emptyset	$(0, \lceil \gamma(M) \rceil - 1) \subseteq S_{\{\widehat{M}\}} \subseteq \tilde{S}_{\{M\}}^u \subseteq (0, \lfloor \gamma(M) \rfloor + 1]$
(dc)	$(0, \gamma(M)) \subseteq S_{\{\widehat{M}\}} \subseteq \tilde{S}_{\{M\}}^u \subseteq (0, \gamma(M)]$
$(dc) \wedge \gamma(M) \in \mathbb{N}$	the conjecture is true
$(mg) \wedge \gamma(M) \in \mathbb{Q}$	the conjecture is true
$(n!^\alpha)_{n=0}^\infty, \alpha > 0$	the conjecture is true

Based on: [J.P. Ramis (1978), H.-J. Petzsche (1988), J. Schmets, M. Valdivia (2000), V. Thilliez (2003), J. Sanz (2014), A. Debrouwere (2020), J.J.-G., J. Sanz, G. Schindl (2019,2021) J.J.-G., I. Miguel-Cantero, J. Sanz, G. Schindl (2023)]

Shifted moments condition

\mathbf{M} has **shifted moments (sm)** if

$$\exists C_0 > 0, H > 1 : \forall n \geq 0, \log \left(\frac{m_{n+1}}{m_n} \right) \leq C_0 H^{n+1}.$$

The property (sm) is preserved under equivalence of sequences.

Let \mathbf{M} be a sequence such that $a_0 := \inf_{n \geq 0} m_n > 0$ (e.g. if \mathbf{M} is (lc)):

- (a) (dc) implies (sm).
- (b) (sm) is equivalent to $\exists C_1 > 0, H > 1 : \forall n \geq 0, \log(m_n) \leq C_1 H^n$,

Examples:

$\mathbf{M} = (n^{\tau n^\sigma})_n$ ($\tau > 0, \sigma \geq 2$) do not satisfy (dc), but they satisfy (sm).
 $\mathbf{M} = (q^{n^n})_n$ ($q > 1$; $M_0 := 1$) do not satisfy (sm).

Optimal flat functions

Let \mathbf{M} be a weight sequence. The **associated function** is defined by

$$\omega_{\mathbf{M}}(t) := \sup_{n \geq 0} \log \left(\frac{t^n}{M_n} \right).$$

Let \mathbf{M} be a weight sequence, S be a sector. A function $G \in \mathcal{H}(S)$ is said to be an **$\{\mathbf{M}\}$ -optimal flat function** if:

(1) G is $\{\mathbf{M}\}$ -flat in S , that is:

$$\exists K_1, K_2 > 0 : \forall z \in S, \quad |G(z)| \leq K_1 \exp(-\omega_{\mathbf{M}}(K_2/|z|)).$$

(2) G is optimal, that is:

$$\exists K_3, K_4 > 0 : \forall x \in (0, \infty), \quad G(x) \geq K_3 \exp(-\omega_{\mathbf{M}}(K_4/x)).$$

Kernel functions and moments

Proposition. [J.J.-G., I. Miguel-Cantero, J. Sanz, G. Schindl (2023)]

Let \mathbf{M} be a weight sequence with $\gamma(\mathbf{M}) > 0$ and $0 < \gamma < \gamma(\mathbf{M})$. Then, there exists an optimal $\{\mathbf{M}\}$ -flat function in S_γ .

Proposition. [J.J.-G., I. Miguel-Cantero, J. Sanz, G. Schindl (2025)]

Suppose \mathbf{M} is a weight sequence with $\gamma(\mathbf{M}) > 0$, G is an optimal $\{\mathbf{M}\}$ -flat function in S . We define the kernel function $e: S \rightarrow \mathbb{C}$ by $e(z) = G(1/z)$ and for every $k \geq 0$ we define the k -th moment of the function $e(z)$ by

$$\mu(k) := \int_0^\infty t^p e(t) dt.$$

Then, \mathbf{M} satisfies condition (sm) if and only if the shifted sequence $\mathbf{M}_{+1} := (M_{n+1})_{n=0}^\infty$ and $\boldsymbol{\mu} = (\mu(n))_{n=0}^\infty$ are equivalent.

Improved Borel-Ritt-Gevrey theorem

Theorem. [J.J.-G., I. Miguel-Cantero, J. Sanz, G. Schindl (2025)]

Let \mathbf{M} be a weight sequence satisfying (sm) and with $\gamma(\mathbf{M}) > 0$, and let $\gamma > 0$ be given. Then, each of the following statements implies the next one:

- (I) $\gamma < \gamma(\mathbf{M})$.
- (II) There exists $c > 0$ such that for every $h > 0$ there exists an operator from $\mathbb{C}[[z]]_{\mathbf{M},h}$ into $\tilde{\mathcal{A}}_{\mathbf{M},ch}^u(S_\gamma)$.
- (III) The Peano-Borel map $\tilde{\mathcal{B}} : \tilde{\mathcal{A}}_{\{\mathbf{M}\}}^u(S_\gamma) \rightarrow \mathbb{C}[[z]]_{\{\mathbf{M}\}}$ is surjective. In other words, $(0, \gamma] \subseteq \tilde{S}_{\{\mathbf{M}\}}^u$.
- (IV) $(0, \gamma) \subseteq S_{\{\widehat{\mathbf{M}}\}}$.

In particular, one has $(0, \gamma(\mathbf{M})) \subseteq S_{\{\widehat{\mathbf{M}}\}} \subseteq \tilde{S}_{\{\mathbf{M}\}}^u$.

How to construct extension operators

Idea: We take G is an optimal $\{M\}$ -flat function in S_γ .

We construct the kernel function $e: S \rightarrow \mathbb{C}$ by $e(z) = G(1/z)$ and the corresponding moment sequence μ .

Given $h > 0$ and $\widehat{f} \in \mathbb{C}[[z]]_{M,h}$, we consider its formal Borel-like transform: We divide its coefficients by the corresponding term of the sequence μ , and thanks to (sm) we have a convergent series.

Then we apply a truncated Laplace-like transform using the kernel e to construct a function in $f \in \widetilde{\mathcal{A}}_{M,ch}^u(S_\gamma)$ such that $\mathcal{B}(f) = \widehat{f}$.

When working with the tools of Borel-Laplace M -summability, this shift arises naturally, so (sm) is the appropriate condition.

New information

Additional assumptions	Information
\emptyset	$(0, \lceil \gamma(M) \rceil - 1) \subseteq S_{\{\widehat{M}\}} \subseteq \tilde{S}_{\{M\}}^u \subseteq (0, \lfloor \gamma(M) \rfloor + 1]$
(sm)	$(0, \gamma(M)) \subseteq S_{\{\widehat{M}\}} \subseteq \tilde{S}_{\{M\}}^u \subseteq (0, \lfloor \gamma(M) \rfloor + 1]$
(dc)	$(0, \gamma(M)) \subseteq S_{\{\widehat{M}\}} \subseteq \tilde{S}_{\{M\}}^u \subseteq (0, \gamma(M)]$
$(dc) \wedge \gamma(M) \in \mathbb{N}$	the conjecture is true
$(mg) \wedge \gamma(M) \in \mathbb{Q}$	the conjecture is true
Gevrey: $(n!^\alpha)_{n=0}^\infty$	the conjecture is true

Known results in the Beurling case

Problem: Optimal flat functions are not available.

Additional assumptions	Information
\emptyset	$(0, \lceil \gamma(M) \rceil - 1) \subseteq S_{(\widehat{M})} \subseteq \tilde{S}_{(M)}^u$ [J. Schmets, M. Valdivia (2000)]
(dc)	$(0, \lceil \gamma(M) \rceil - 1) \subseteq S_{(\widehat{M})} \subseteq \tilde{S}_{(M)}^u \subseteq (0, \lfloor \gamma(M) \rfloor + 1]$ [J. Schmets, M. Valdivia (2000)]
(mg)	$(0, \gamma(M)) \subseteq S_{(\widehat{M})} \subseteq \tilde{S}_{(M)}^u \subseteq (0, \gamma(M)]$ [V. Thilliez (2003), A. Debrouwere (2020,2021)]

New result for regular sequences

Theorem. [A. Debrouwere (2020)] Suppose $\widehat{\mathbf{M}}$ is a regular sequence ($\widehat{\mathbf{M}}$ is a w.s. and (dc)). The following are equivalent:

- (1) The Peano-Borel map $\widetilde{\mathcal{B}}: \mathcal{A}_{(\widehat{\mathbf{M}})}(S_1) \rightarrow \mathbb{C}[[z]]_{(\mathbf{M})}$ is surjective.
- (2) There exists a global ext. operator $U_{\mathbf{M}}: \mathbb{C}[[z]]_{(\mathbf{M})} \rightarrow \mathcal{A}_{(\widehat{\mathbf{M}})}(S_1)$.
- (3) $\gamma(\mathbf{M}) > 1$.

Theorem. [J.J.-G., I. Miguel-Cantero, J. Sanz, G. Schindl (2025)]

Suppose $\widehat{\mathbf{M}}$ is a regular sequence, and let $\gamma > 0$. Each of the following statements implies the next one:

- (I) $\gamma < \gamma(\mathbf{M})$.
- (II) There exists a global ext. operator $U_{\mathbf{M},\gamma}: \mathbb{C}[[z]]_{(\mathbf{M})} \rightarrow \widetilde{\mathcal{A}}_{(\mathbf{M})}^u(S_\gamma)$.
- (III) The Peano-Borel map $\widetilde{\mathcal{B}}: \widetilde{\mathcal{A}}_{(\mathbf{M})}^u(S_\gamma) \rightarrow \mathbb{C}[[z]]_{(\mathbf{M})}$ is surjective.
- (IV) $\gamma \leq \gamma(\mathbf{M})$.

New result for regular sequences

Additional assumptions	Information
\emptyset	$(0, \lceil \gamma(M) \rceil - 1) \subseteq S_{(\widehat{M})} \subseteq \tilde{S}_{(M)}^u$ [J. Schmets, M. Valdivia (2000)]
(dc)	$(0, \gamma(M)) \subseteq S_{(\widehat{M})} \subseteq \tilde{S}_{(M)}^u \subseteq (0, \gamma(M))$
(mg)	$(0, \gamma(M)) \subseteq S_{(\widehat{M})} \subseteq \tilde{S}_{(M)}^u \subseteq (0, \gamma(M))$ [V. Thilliez (2003) , A. Debrouwere (2020,2021)]

New result

Theorem. [J.J.-G., I. Miguel-Cantero, J. Sanz, G. Schindl (2025)]

Let \mathbf{M} be a weight sequence with $\gamma(\mathbf{M}) > 0$ and that satisfies (sm), and $0 < \gamma < \gamma(\mathbf{M})$ be given. Then, the Peano-Borel map

$$\mathcal{B} : \tilde{A}_{(\mathbf{M})}^u(S_\gamma) \rightarrow \mathbb{C}[[z]]_{(\mathbf{M})}$$

is surjective, and so $(0, \gamma(\mathbf{M})) \subseteq \tilde{S}_{(\mathbf{M})}^u$.

Idea: Given $\widehat{f} \in \mathbb{C}[[z]]_{(\mathbf{M})}$, we construct, using Thilliez's technique and Chaumat-Chollet sequences, a weight sequence \mathbf{N} that satisfies (sm), $\gamma(\mathbf{N}) > \gamma$, $\tilde{A}_{\{\mathbf{N}\}}^u(S_\gamma) \subseteq \tilde{A}_{(\mathbf{M})}^u(S_\gamma)$ and such that $\widehat{f} \in \mathbb{C}[[z]]_{\{\mathbf{N}\}}$. We conclude by applying the theorem for the Roumieu case.

New results for the Beurling case

Additional assumptions	Information
\emptyset	$(0, \lceil \gamma(\mathbf{M}) \rceil - 1) \subseteq S_{(\widehat{\mathbf{M}})} \subseteq \tilde{S}_{(\mathbf{M})}^u$ [J. Schmets, M. Valdivia (2000)]
(sm)	$(0, \gamma(\mathbf{M})) \subseteq S_{(\widehat{\mathbf{M}})} \subseteq \tilde{S}_{(\mathbf{M})}^u$
(dc)	$(0, \gamma(\mathbf{M})) \subseteq S_{(\widehat{\mathbf{M}})} \subseteq \tilde{S}_{(\mathbf{M})}^u \subseteq (0, \gamma(\mathbf{M}))$
(mg)	$(0, \gamma(\mathbf{M})) \subseteq S_{(\widehat{\mathbf{M}})} \subseteq \tilde{S}_{(\mathbf{M})}^u \subseteq (0, \gamma(\mathbf{M}))$ [V. Thilliez (2003), A. Debrouwere (2020,2021)]

THANK YOU VERY MUCH
FOR YOUR ATTENTION!

THANK YOU VERY MUCH
FOR YOUR ATTENTION!

¡FELIZ CUMPLEAÑOS!