

On the Grothendieck property for Banach spaces $Lip_0(M)$ of Lipschitz functions

JERZY KĄKOL

A. MICKIEWICZ UNIVERSITY, POZNAŃ

Valencia, June 17-19, 2025

① A Banach space E is a **Grothendieck space** if every weak*-convergent sequence in E' is weakly convergent.

- ① A Banach space E is a **Grothendieck space** if every weak*-convergent sequence in E' is weakly convergent.
- ② $\ell_\infty(\Gamma) = C(\beta\Gamma)$ is Grothendieck for discrete Γ ; more generally, $C(X)$ over compact extremely disconnected (Stonean) X are Grothendieck.

- ① A Banach space E is a **Grothendieck space** if every weak*-convergent sequence in E' is weakly convergent.
- ② $\ell_\infty(\Gamma) = C(\beta\Gamma)$ is Grothendieck for discrete Γ ; more generally, $C(X)$ over compact extremely disconnected (Stonean) X are Grothendieck.

- ① A Banach space E is a **Grothendieck space** if every weak*-convergent sequence in E' is weakly convergent.
- ② $\ell_\infty(\Gamma) = C(\beta\Gamma)$ is Grothendieck for discrete Γ ; more generally, $C(X)$ over **compact extremely disconnected (Stonean) X** are Grothendieck.
- ③ For basically disconnected spaces X (open σ -compact subsets have open closures) $C(X)$ is Grothendieck.

- ① A Banach space E is a **Grothendieck space** if every weak*-convergent sequence in E' is weakly convergent.
- ② $\ell_\infty(\Gamma) = C(\beta\Gamma)$ is Grothendieck for discrete Γ ; more generally, $C(X)$ over **compact extremely disconnected (Stonean) X** are Grothendieck.
- ③ For basically disconnected spaces X (open σ -compact subsets have open closures) $C(X)$ is Grothendieck.
- ④ For F -spaces X (disjoint open F_σ -sets have disjoint closures) $C(X)$ is Grothendieck.

- ① A Banach space E is a **Grothendieck space** if every weak*-convergent sequence in E' is weakly convergent.
- ② $\ell_\infty(\Gamma) = C(\beta\Gamma)$ is Grothendieck for discrete Γ ; more generally, $C(X)$ over **compact extremely disconnected (Stonean) X** are Grothendieck.
- ③ For basically disconnected spaces X (open σ -compact subsets have open closures) $C(X)$ is Grothendieck.
- ④ For F -spaces X (disjoint open F_σ -sets have disjoint closures) $C(X)$ is Grothendieck.
- ⑤ C^* -algebras have property (V). Hence, von Neumann algebra (dual C^* -algebra) is Grothendieck; in particular $B(H)$ is Grothendieck for every Hilbert space H (Pfitzner).

- ① A Banach space E is a **Grothendieck space** if every weak*-convergent sequence in E' is weakly convergent.
- ② $\ell_\infty(\Gamma) = C(\beta\Gamma)$ is Grothendieck for discrete Γ ; more generally, $C(X)$ over **compact extremely disconnected (Stonean) X** are Grothendieck.
- ③ For basically disconnected spaces X (open σ -compact subsets have open closures) $C(X)$ is Grothendieck.
- ④ For F -spaces X (disjoint open F_σ -sets have disjoint closures) $C(X)$ is Grothendieck.
- ⑤ C^* -algebras have property (V). Hence, von Neumann algebra (dual C^* -algebra) is Grothendieck; in particular $B(H)$ is Grothendieck for every Hilbert space H (Pfitzner).
- ⑥ M. Gonzales, T. Kania, Grothendieck spaces: the landscape and perspectives- survey article.

- ① Every Grothendieck Banach space with a M-basis is reflexive (W. B. Johnson).

- ① Every Grothendieck Banach space with a M-basis is reflexive (W. B. Johnson).
- ② Every non-reflexive Grothendieck E contains a copy of ℓ_1 .

- ① Every Grothendieck Banach space with a M-basis is reflexive (W. B. Johnson).
- ② Every non-reflexive Grothendieck E contains a copy of ℓ_1 .
- ③ There was a conjecture (Diestel): Each nonreflexive Grothendieck E contains ℓ_∞ , or at least has quotient ℓ_∞ .

- ① Every Grothendieck Banach space with a M-basis is reflexive (W. B. Johnson).
- ② Every non-reflexive Grothendieck E contains a copy of ℓ_1 .
- ③ There was a conjecture (Diestel): Each nonreflexive Grothendieck E contains ℓ_∞ , or at least has quotient ℓ_∞ .
- ④ There is in ZFC Grothendieck $C(X)$ without a copy of ℓ_∞ (Haydon).

- ① Every Grothendieck Banach space with a M-basis is reflexive (W. B. Johnson).
- ② Every non-reflexive Grothendieck E contains a copy of ℓ_1 .
- ③ There was a conjecture (Diestel): Each nonreflexive Grothendieck E contains ℓ_∞ , or at least has quotient ℓ_∞ .
- ④ There is in ZFC Grothendieck $C(X)$ without a copy of ℓ_∞ (Haydon).
- ⑤ Haydon's space X contains $\beta\mathbb{N}$ (Koszmider-Shelah), so $C(X)$ has a quotient isomorphic to ℓ_∞ .

- ① Every Grothendieck Banach space with a M-basis is reflexive (W. B. Johnson).
- ② Every non-reflexive Grothendieck E contains a copy of ℓ_1 .
- ③ There was a conjecture (Diestel): Each nonreflexive Grothendieck E contains ℓ_∞ , or at least has quotient ℓ_∞ .
- ④ There is in ZFC Grothendieck $C(X)$ without a copy of ℓ_∞ (Haydon).
- ⑤ Haydon's space X contains $\beta\mathbb{N}$ (Koszmider-Shelah), so $C(X)$ has a quotient isomorphic to ℓ_∞ .
- ⑥ (CH) There is compact X without $\beta\mathbb{N}$ and such that $C(X)$ is Grothendieck but without quotients isomorphic to ℓ_∞ (Talagrand). The same conclusion without (CH) (Sobota-Zdomskyy).

- ① Every Grothendieck Banach space with a M-basis is reflexive (W. B. Johnson).
- ② Every non-reflexive Grothendieck E contains a copy of ℓ_1 .
- ③ There was a conjecture (Diestel): Each nonreflexive Grothendieck E contains ℓ_∞ , or at least has quotient ℓ_∞ .
- ④ There is in ZFC Grothendieck $C(X)$ without a copy of ℓ_∞ (Haydon).
- ⑤ Haydon's space X contains $\beta\mathbb{N}$ (Koszmider-Shelah), so $C(X)$ has a quotient isomorphic to ℓ_∞ .
- ⑥ (CH) There is compact X without $\beta\mathbb{N}$ and such that $C(X)$ is Grothendieck but without quotients isomorphic to ℓ_∞ (Talagrand). The same conclusion without (CH) (Sobota-Zdomskyy).
- ⑦ ((MA) \wedge \sim (CH)) Every nonreflexive Grothendieck space has a quotient isomorphic to ℓ_∞ (Haydon-Levy-Odell).

① A series $\sum_n x_n$ in a Banach space E is weakly unconditionally converging if for every $x^* \in E^*$ one has $\sum_n x^*(x_n) < \infty$. An operator $T : E \rightarrow F$ is **unconditionally converging** if for each weakly unconditionally converging series $\sum_n x_n$ the series $\sum_n T(x_n)$ is unconditionally converging in F .

- ① A series $\sum_n x_n$ in a Banach space E is weakly unconditionally converging if for every $x^* \in E^*$ one has $\sum_n x^*(x_n) < \infty$. An operator $T : E \rightarrow F$ is **unconditionally converging** if for each weakly unconditionally converging series $\sum_n x_n$ the series $\sum_n T(x_n)$ is unconditionally converging in F .
- ② Equivalently, ... if there is no subspace of E isomorphic to c_0 on which T is an isomorphism.

- ① A series $\sum_n x_n$ in a Banach space E is weakly unconditionally converging if for every $x^* \in E^*$ one has $\sum_n x^*(x_n) < \infty$. An operator $T : E \rightarrow F$ is **unconditionally converging** if for each weakly unconditionally converging series $\sum_n x_n$ the series $\sum_n T(x_n)$ is unconditionally converging in F .
- ② Equivalently, ... if there is no subspace of E isomorphic to c_0 on which T is an isomorphism.
- ③ A Banach space E has property (V) , whenever every **unconditionally converging operator** $T : E \rightarrow F$ is **weakly compact** (Pełczyński).

- ① A series $\sum_n x_n$ in a Banach space E is weakly unconditionally converging if for every $x^* \in E^*$ one has $\sum_n x^*(x_n) < \infty$. An operator $T : E \rightarrow F$ is **unconditionally converging** if for each weakly unconditionally converging series $\sum_n x_n$ the series $\sum_n T(x_n)$ is unconditionally converging in F .
- ② Equivalently, ... if there is no subspace of E isomorphic to c_0 on which T is an isomorphism.
- ③ A Banach space E has property (V) , whenever every **unconditionally converging operator** $T : E \rightarrow F$ is **weakly compact** (Pełczyński).
- ④ Reflexive spaces and $C(K)$ -spaces have property (V) .

- ① A series $\sum_n x_n$ in a Banach space E is weakly unconditionally converging if for every $x^* \in E^*$ one has $\sum_n x^*(x_n) < \infty$. An operator $T : E \rightarrow F$ is **unconditionally converging** if for each weakly unconditionally converging series $\sum_n x_n$ the series $\sum_n T(x_n)$ is unconditionally converging in F .
- ② Equivalently, ... if there is no subspace of E isomorphic to c_0 on which T is an isomorphism.
- ③ A Banach space E has property (V), whenever every **unconditionally converging operator** $T : E \rightarrow F$ is **weakly compact** (Pełczyński).
- ④ Reflexive spaces and $C(K)$ -spaces have property (V).
- ⑤ Moreover, property (V) is inherited by quotients (but not by closed subspaces).

- ① $C[0, 1]$ has property (V) but it is not Grothendieck.
- ② A Banach space E with property (V) is Grothendieck iff E does not contain complemented c_0 .

- ① $C[0, 1]$ has property (V) but it is not Grothendieck.
- ② A Banach space E with property (V) is Grothendieck iff E does not contain complemented c_0 .

- ① $C[0, 1]$ has property (V) but it is not Grothendieck.
- ② A Banach space E with property (V) is Grothendieck iff E does not contain complemented c_0 .
- ③ This leads to the following theorem.

Theorem 1 (Cembranos)

A Banach space $C(X)$ is Grothendieck iff $C(X)$ does not contain a complemented copy of c_0 .

- ① $C[0, 1]$ has property (V) but it is not Grothendieck.
- ② A Banach space E with property (V) is Grothendieck iff E does not contain complemented c_0 .
- ③ This leads to the following theorem.

Theorem 1 (Cembranos)

A Banach space $C(X)$ is Grothendieck iff $C(X)$ does not contain a complemented copy of c_0 .

Theorem 2 (Cembranos-Freniche)

For every infinite compact spaces K and L the Banach space $C(K \times L)$ contains a complemented copy of the space c_0 .

- ① $C[0, 1]$ has property (V) but it is not Grothendieck.
- ② A Banach space E with property (V) is Grothendieck iff E does not contain complemented c_0 .
- ③ This leads to the following theorem.

Theorem 1 (Cembranos)

A Banach space $C(X)$ is Grothendieck iff $C(X)$ does not contain a complemented copy of c_0 .

Theorem 2 (Cembranos-Freniche)

For every infinite compact spaces K and L the Banach space $C(K \times L)$ contains a complemented copy of the space c_0 .

- ④ Do Grothendieck spaces have property (V)?

- ① $C[0, 1]$ has property (V) but it is not Grothendieck.
- ② A Banach space E with property (V) is Grothendieck iff E does not contain complemented c_0 .
- ③ This leads to the following theorem.

Theorem 1 (Cembranos)

A Banach space $C(X)$ is Grothendieck iff $C(X)$ does not contain a complemented copy of c_0 .

Theorem 2 (Cembranos-Freniche)

For every infinite compact spaces K and L the Banach space $C(K \times L)$ contains a complemented copy of the space c_0 .

- ④ Do Grothendieck spaces have property (V)?
- ⑤ Do non-reflexive Grothendieck E contain a copy of c_0 ?

- ① We will study the same problem but for Banach spaces $Lip_0(M)$ of Lipschitz functions on a metric space M .

- ① We will study the same problem but for Banach spaces $Lip_0(M)$ of Lipschitz functions on a metric space M .
- ② $Lip(M)$ - Banach space of all bounded real-valued Lipschitz functions on M with the norm $\|f\|_{Lip(M)} = \|f\|_\infty + lip(f)$, where $\|f\|_\infty = \sup_{x \in M} |f(x)|$, and $lip(f)$ Lipschitz constant of f .

- ① We will study the same problem but for Banach spaces $Lip_0(M)$ of Lipschitz functions on a metric space M .
- ② $Lip(M)$ - Banach space of all bounded real-valued Lipschitz functions on M with the norm $\|f\|_{Lip(M)} = \|f\|_\infty + lip(f)$, where $\|f\|_\infty = \sup_{x \in M} |f(x)|$, and $lip(f)$ Lipschitz constant of f .
- ③ $Lip_0(M)$ - the Banach space of all real-valued Lipschitz functions $f(e) = 0$ (for fixed e) with $\|f\|_{Lip_0(M)} = lip(f)$.

- ① We will study the same problem but for Banach spaces $Lip_0(M)$ of Lipschitz functions on a metric space M .
- ② $Lip(M)$ - Banach space of all bounded real-valued Lipschitz functions on M with the norm $\|f\|_{Lip(M)} = \|f\|_\infty + lip(f)$, where $\|f\|_\infty = \sup_{x \in M} |f(x)|$, and $lip(f)$ Lipschitz constant of f .
- ③ $Lip_0(M)$ - the Banach space of all real-valued Lipschitz functions $f(e) = 0$ (for fixed e) with $\|f\|_{Lip_0(M)} = lip(f)$.
- ④ $\mathcal{F}(M) = \overline{\text{span}\{\delta_x : x \in M\}}^{\|\cdot\|_{Lip_0(M)^*}}$ Lipschitz-free space.

- ① We will study the same problem but for Banach spaces $Lip_0(M)$ of Lipschitz functions on a metric space M .
- ② $Lip(M)$ - Banach space of all bounded real-valued Lipschitz functions on M with the norm $\|f\|_{Lip(M)} = \|f\|_\infty + lip(f)$, where $\|f\|_\infty = \sup_{x \in M} |f(x)|$, and $lip(f)$ Lipschitz constant of f .
- ③ $Lip_0(M)$ - the Banach space of all real-valued Lipschitz functions $f(e) = 0$ (for fixed e) with $\|f\|_{Lip_0(M)} = lip(f)$.
- ④ $\mathcal{F}(M) = \overline{\text{span}\{\delta_x : x \in M\}}^{\|\cdot\|_{Lip_0(M)^*}}$ Lipschitz-free space.
- ⑤ $\mathcal{F}(M)^*$ is isometrically isomorphic to $Lip_0(M)$.

- ① We will study the same problem but for Banach spaces $Lip_0(M)$ of Lipschitz functions on a metric space M .
- ② $Lip(M)$ - Banach space of all bounded real-valued Lipschitz functions on M with the norm $\|f\|_{Lip(M)} = \|f\|_\infty + lip(f)$, where $\|f\|_\infty = \sup_{x \in M} |f(x)|$, and $lip(f)$ Lipschitz constant of f .
- ③ $Lip_0(M)$ - the Banach space of all real-valued Lipschitz functions $f(e) = 0$ (for fixed e) with $\|f\|_{Lip_0(M)} = lip(f)$.
- ④ $\mathcal{F}(M) = \overline{\text{span}\{\delta_x : x \in M\}}^{\|\cdot\|_{Lip_0(M)^*}}$ Lipschitz-free space.
- ⑤ $\mathcal{F}(M)^*$ is isometrically isomorphic to $Lip_0(M)$.

Theorem 3 (Hájek–Novotný)

M an infinite metric space. Then $Lip_0(M)$ contains an isomorphic copy of $\ell_\infty(d(M))$. Hence $\mathcal{F}(M)$ contains a complemented copy of $\ell_1(d(M))$.

- ① Apart the case $Lip_0([0, 1]) \simeq \ell_\infty \simeq Lip_0(2^{\mathbb{N}})$ there is no known example of $Lip_0(M)$ which is a Grothendieck space.

- ① Apart the case $Lip_0([0, 1]) \simeq \ell_\infty \simeq Lip_0(2^{\mathbb{N}})$ there is no known example of $Lip_0(M)$ which is a Grothendieck space.
- ② For every infinite metric space M the space $\mathcal{F}(M)$ is not a Grothendieck space.

- ① Apart the case $Lip_0([0, 1]) \simeq \ell_\infty \simeq Lip_0(2^{\mathbb{N}})$ there is no known example of $Lip_0(M)$ which is a Grothendieck space.
- ② For every infinite metric space M the space $\mathcal{F}(M)$ is not a Grothendieck space.
- ③ Indeed, the space $\mathcal{F}(M)$ contains a complemented copy of the space $\ell_1(d(M))$. Hence $\mathcal{F}(M)$ contains a complemented copy of ℓ_1 .

- ① Apart the case $Lip_0([0, 1]) \simeq \ell_\infty \simeq Lip_0(2^{\mathbb{N}})$ there is no known example of $Lip_0(M)$ which is a Grothendieck space.
- ② For every infinite metric space M the space $\mathcal{F}(M)$ is not a Grothendieck space.
- ③ Indeed, the space $\mathcal{F}(M)$ contains a complemented copy of the space $\ell_1(d(M))$. Hence $\mathcal{F}(M)$ contains a complemented copy of ℓ_1 .
- ④ Since complemented subspaces of a Banach space with the Grothendieck property are Grothendieck, and ℓ_1 fails the Grothendieck property, the claim holds.

For spaces $Lip_0(M)$ Cembrano's theorem does not help:

For spaces $Lip_0(M)$ Cembrano's theorem does not help:

- ① Every $Lip_0(M)$ is isometrically isomorphic to $\mathcal{F}(M)^*$, hence it cannot contain any complemented copy of c_0 .

For spaces $Lip_0(M)$ Cembrano's theorem does not help:

- ① Every $Lip_0(M)$ is isometrically isomorphic to $\mathcal{F}(M)^*$, hence it cannot contain any complemented copy of c_0 .
- ② E is a Grothendieck space iff E^* is weakly sequentially complete and E has no quotient isomorphic to c_0 (Räbiger).

For spaces $Lip_0(M)$ Cembrano's theorem does not help:

- ① Every $Lip_0(M)$ is isometrically isomorphic to $\mathcal{F}(M)^*$, hence it cannot contain any complemented copy of c_0 .
- ② E is a Grothendieck space iff E^* is weakly sequentially complete and E has no quotient isomorphic to c_0 (Räbiger).
- ③ To prove that $Lip_0(M)$ is not Grothendieck (using Räbiger's criterion), we need either to look for a quotient of $Lip_0(M)$ isomorphic to c_0 or to show that the dual space $Lip_0(M)^*$ is not weakly sequentially complete.

For spaces $Lip_0(M)$ Cembrano's theorem does not help:

- ① Every $Lip_0(M)$ is isometrically isomorphic to $\mathcal{F}(M)^*$, hence it cannot contain any complemented copy of c_0 .
- ② E is a Grothendieck space iff E^* is weakly sequentially complete and E has no quotient isomorphic to c_0 (Räbiger).
- ③ To prove that $Lip_0(M)$ is not Grothendieck (using Räbiger's criterion), we need either to look for a quotient of $Lip_0(M)$ isomorphic to c_0 or to show that the dual space $Lip_0(M)^*$ is not weakly sequentially complete.
- ④ Grothendieck property is preserved by continuous (open) linear surjections, so $Lip_0(E)$ lacks the Grothendieck property if E^* fails to have it (since $Lip_0(E)$ contains a complemented copy of E^*). This provides examples of non-Grothendieck spaces $Lip_0(E)$ over Banach spaces E .

① Recall that if $Lip_0(M)$ can be mapped onto ℓ_1 by a continuous linear map, then $Lip_0(M)$ is not Grothendieck.

- ① Recall that if $Lip_0(M)$ can be mapped onto ℓ_1 by a continuous linear map, then $Lip_0(M)$ is not Grothendieck.
- ② Using this fact we gather together a few classes of Banach spaces E for which $Lip_0(E)$ is not Grothendieck.

- ① Recall that if $Lip_0(M)$ can be mapped onto ℓ_1 by a continuous linear map, then $Lip_0(M)$ is not Grothendieck.
- ② Using this fact we gather together a few classes of Banach spaces E for which $Lip_0(E)$ is not Grothendieck.

Theorem 4 (Bargetz–J.K–Sobota)

Let E be a Banach space satisfying any of the following conditions: (1) There is a continuous linear surjection $T: E^* \rightarrow \ell_1$. (2) E is separable and contains an isomorphic copy of a predual of ℓ_1 . (3) E contains a complemented copy of ℓ_1 . (4) E has property (V) and E is not Grothendieck. Then $Lip_0(E)$ is not a Grothendieck space.

- ① Recall that if $Lip_0(M)$ can be mapped onto ℓ_1 by a continuous linear map, then $Lip_0(M)$ is not Grothendieck.
- ② Using this fact we gather together a few classes of Banach spaces E for which $Lip_0(E)$ is not Grothendieck.

Theorem 4 (Bargetz–J.K–Sobota)

Let E be a Banach space satisfying any of the following conditions: (1) There is a continuous linear surjection $T: E^* \rightarrow \ell_1$. (2) E is separable and contains an isomorphic copy of a predual of ℓ_1 . (3) E contains a complemented copy of ℓ_1 . (4) E has property (V) and E is not Grothendieck. Then $Lip_0(E)$ is not a Grothendieck space.

Corollary 5

If $E = c_0$ or $E = \ell_1$, then $Lip_0(E)$ is not a Grothendieck space.

- ① If the dual E^* of a Banach space E is not weakly sequentially complete, then E is not a Grothendieck space.

- ① If the dual E^* of a Banach space E is not weakly sequentially complete, then E is not a Grothendieck space.

Proposition 6

Let E be a separable Banach space not weakly sequentially complete. Then $\text{Lip}_0(E)$ is not a Grothendieck space.

- ① If the dual E^* of a Banach space E is not weakly sequentially complete, then E is not a Grothendieck space.

Proposition 6

Let E be a separable Banach space not weakly sequentially complete. Then $\text{Lip}_0(E)$ is not a Grothendieck space.

- ② Indeed, $\mathcal{F}(E)$ contains an isometric copy of E . If E is separable, (by the lifting property) the space $\mathcal{F}(E)$ contains a linear isometric copy of E (Godefrey-Kalton).

- ① If the dual E^* of a Banach space E is not weakly sequentially complete, then E is not a Grothendieck space.

Proposition 6

Let E be a separable Banach space not weakly sequentially complete. Then $Lip_0(E)$ is not a Grothendieck space.

- ② Indeed, $\mathcal{F}(E)$ contains an isometric copy of E . If E is separable, (by the lifting property) the space $\mathcal{F}(E)$ contains a linear isometric copy of E (Godefrey-Kalton).
- ③ Hence $Lip_0(E)^* \simeq \mathcal{F}(E)^{**}$ is not weakly sequentially complete, so Räbiger's theorem applies.

Corollary 7

$Lip_0(\mathcal{J})$ over the James space \mathcal{J} is not Grothendieck.

Corollary 7

$Lip_0(\mathcal{J})$ over the James space \mathcal{J} is not Grothendieck.

- ① Summing up the above results, we have the following selected cases of metric spaces M for which the space $Lip_0(M)$ does not have the Grothendieck property:

Corollary 7

$Lip_0(\mathcal{J})$ over the James space \mathcal{J} is not Grothendieck.

- ① Summing up the above results, we have the following selected cases of metric spaces M for which the space $Lip_0(M)$ does not have the Grothendieck property:
- ② **M is a separable Banach space which is not weakly sequentially complete**, e.g. M is the James space \mathcal{J} .

Corollary 7

$Lip_0(\mathcal{J})$ over the James space \mathcal{J} is not Grothendieck.

- ① Summing up the above results, we have the following selected cases of metric spaces M for which the space $Lip_0(M)$ does not have the Grothendieck property:
- ② M is a separable Banach space which is not weakly sequentially complete, e.g. M is the James space \mathcal{J} .
- ③ M contains a bilipschitz copy of the unit sphere S_{c_0} , e.g. $M = C(K)$ for some infinite compact space K .

Corollary 7

$Lip_0(\mathcal{J})$ over the James space \mathcal{J} is not Grothendieck.

- ① Summing up the above results, we have the following selected cases of metric spaces M for which the space $Lip_0(M)$ does not have the Grothendieck property:
- ② M is a separable Banach space which is not weakly sequentially complete, e.g. M is the James space \mathcal{J} .
- ③ M contains a bilipschitz copy of the unit sphere S_{c_0} , e.g. $M = C(K)$ for some infinite compact space K .
- ④ M is a net in c_0 or ℓ_1 .

Corollary 7

$Lip_0(\mathcal{J})$ over the James space \mathcal{J} is not Grothendieck.

- ① Summing up the above results, we have the following selected cases of metric spaces M for which the space $Lip_0(M)$ does not have the Grothendieck property:
- ② M is a separable Banach space which is not weakly sequentially complete, e.g. M is the James space \mathcal{J} .
- ③ M contains a bilipschitz copy of the unit sphere S_{c_0} , e.g. $M = C(K)$ for some infinite compact space K .
- ④ M is a net in c_0 or ℓ_1 .
- ⑤ M is a $C(K)$ -space, $L_1(\mu)$ -space, $Lip_0(M)$ -space, or $\mathcal{F}(M)$ -space.

① A subspace \mathcal{N} of a metric space M is a *net* if there are $\varepsilon, \delta > 0$ such that $\rho(x, y) \geq \varepsilon$ for every $x \neq y \in \mathcal{N}$ and for every $x \in M$ there is $y \in \mathcal{N}$ with $\rho(x, y) < \delta$.

$Lip_0(\mathcal{N})$, where \mathcal{N} is a net in either c_0 or ℓ_1 , admits a continuous operator onto ℓ_1 (Candido, Cúth, Doucha)

① Recall that a metric space M is an *absolute Lipschitz retract* if M is a Lipschitz retract of every metric space containing M .

- ① Recall that a metric space M is an *absolute Lipschitz retract* if M is a Lipschitz retract of every metric space containing M .
- ② Equivalently, a metric space M is an absolute Lipschitz retract if for all metric spaces $P \subseteq N$ and every Lipschitz mapping $f : P \rightarrow M$ there is a Lipschitz extension $F : N \rightarrow M$ of f .

- ① Recall that a metric space M is an *absolute Lipschitz retract* if M is a Lipschitz retract of every metric space containing M .
- ② Equivalently, a metric space M is an absolute Lipschitz retract if for all metric spaces $P \subseteq N$ and every Lipschitz mapping $f : P \rightarrow M$ there is a Lipschitz extension $F : N \rightarrow M$ of f .

- ① Recall that a metric space M is an *absolute Lipschitz retract* if M is a Lipschitz retract of every metric space containing M .
- ② Equivalently, a metric space M is an absolute Lipschitz retract if for all metric spaces $P \subseteq N$ and every Lipschitz mapping $f : P \rightarrow M$ there is a Lipschitz extension $F : N \rightarrow M$ of f .
- ③ Banach spaces c_0 and $C(K)$ for K metric compact are absolute Lipschitz retracts (Lindenstrauss).

① Again recall that $Lip_0(E)$ with a continuous linear surjection onto ℓ_1 are not Grothendieck.

- ① Again recall that $Lip_0(E)$ with a continuous linear surjection onto ℓ_1 are not Grothendieck.

Theorem 8 (Bargetz–J.K–Sobota)

Let E be a separable Banach space which is an absolute Lipschitz retract and contains c_0 . If M contains a bilipschitz copy of S_E of E , then $Lip_0(M)$ is not Grothendieck (since it admits a continuous operator onto ℓ_1 .)

① Again recall that $Lip_0(E)$ with a continuous linear surjection onto ℓ_1 are not Grothendieck.

Theorem 8 (Bargetz–J.K–Sobota)

Let E be a separable Banach space which is an absolute Lipschitz retract and contains c_0 . If M contains a bilipschitz copy of S_E of E , then $Lip_0(M)$ is not Grothendieck (since it admits a continuous operator onto ℓ_1 .)

Corollary 9

If M contains a bilipschitz copy of the unit sphere S_{c_0} of c_0 , then $Lip_0(M)$ is not Grothendieck.

1 A few open problems and comments.

1 A few open problems and comments.

Problem 10

Does there exist Banach E of dimension at least 2 such that $\text{Lip}_0(E)$ admits no continuous linear surjection onto ℓ_1 ? Can such $\text{Lip}_0(E)$ admit a continuous linear surjection onto c_0 ?

1 A few open problems and comments.

Problem 10

Does there exist Banach E of dimension at least 2 such that $\text{Lip}_0(E)$ admits no continuous linear surjection onto ℓ_1 ? Can such $\text{Lip}_0(E)$ admit a continuous linear surjection onto c_0 ?

Problem 11

Is there an infinite-dimensional Banach space E for which the space $\text{Lip}_0(E)$ is a Grothendieck space?

1 A few open problems and comments.

Problem 10

Does there exist Banach E of dimension at least 2 such that $\text{Lip}_0(E)$ admits no continuous linear surjection onto ℓ_1 ? Can such $\text{Lip}_0(E)$ admit a continuous linear surjection onto c_0 ?

Problem 11

Is there an infinite-dimensional Banach space E for which the space $\text{Lip}_0(E)$ is a Grothendieck space?

Problem 12

Find a Banach space E s.t. $\text{Lip}_0(E)$ has property (V).

① A few open problems and comments.

Problem 10

Does there exist Banach E of dimension at least 2 such that $\text{Lip}_0(E)$ admits no continuous linear surjection onto ℓ_1 ? Can such $\text{Lip}_0(E)$ admit a continuous linear surjection onto c_0 ?

Problem 11

Is there an infinite-dimensional Banach space E for which the space $\text{Lip}_0(E)$ is a Grothendieck space?

Problem 12

Find a Banach space E s.t. $\text{Lip}_0(E)$ has property (V).

② Such E provides an example of Grothendieck $\text{Lip}_0(E)$.

① A positive answer to Problem 11 provides a positive answer to the first question in Problem 10, as the Grothendieck property is preserved by quotients.

- ① A positive answer to Problem 11 provides a positive answer to the first question in Problem 10, as the Grothendieck property is preserved by quotients.
- ② Natural variants of the above problems:

- ① A positive answer to Problem 11 provides a positive answer to the first question in Problem 10, as the Grothendieck property is preserved by quotients.
- ② Natural variants of the above problems:

Problem 13

Is there a reflexive Banach space X such that $Lip_0(X)$ is a Grothendieck space?

- ① A positive answer to Problem 11 provides a positive answer to the first question in Problem 10, as the Grothendieck property is preserved by quotients.
- ② Natural variants of the above problems:

Problem 13

Is there a reflexive Banach space X such that $\text{Lip}_0(X)$ is a Grothendieck space?

Problem 14

Is the space $\text{Lip}_0(\ell_2)$ a Grothendieck space?

- ① A positive answer to Problem 11 provides a positive answer to the first question in Problem 10, as the Grothendieck property is preserved by quotients.
- ② Natural variants of the above problems:

Problem 13

Is there a reflexive Banach space X such that $\text{Lip}_0(X)$ is a Grothendieck space?

Problem 14

Is the space $\text{Lip}_0(\ell_2)$ a Grothendieck space?

Problem 15

Is $\text{Lip}_0(\mathbb{R}^2)$ a Grothendieck space? Note $\text{Lip}_0(\mathbb{R}) \simeq L^\infty(\mathbb{R})$.

- ① A positive answer to Problem 11 provides a positive answer to the first question in Problem 10, as the Grothendieck property is preserved by quotients.
- ② Natural variants of the above problems:

Problem 13

Is there a reflexive Banach space X such that $\text{Lip}_0(X)$ is a Grothendieck space?

Problem 14

Is the space $\text{Lip}_0(\ell_2)$ a Grothendieck space?

Problem 15

Is $\text{Lip}_0(\mathbb{R}^2)$ a Grothendieck space? Note $\text{Lip}_0(\mathbb{R}) \simeq L^\infty(\mathbb{R})$.

- ③ Note that $\text{Lip}_0(\mathbb{R}^n)^*$ ($n \geq 1$) is not Grothendieck, since it contains $\mathcal{F}(\mathbb{R}^n)$ complemented (Cuth-Kalenda-Kaplicky)

① If $Lip_0(\ell_2)$ is Grothendieck, then for any $d \in \mathbb{N}$ the space $Lip_0(\mathbb{R}^d)$ is Grothendieck, since \mathbb{R}^d is a Lipschitz retract of ℓ_2 .

① If $Lip_0(\ell_2)$ is Grothendieck, then for any $d \in \mathbb{N}$ the space $Lip_0(\mathbb{R}^d)$ is Grothendieck, since \mathbb{R}^d is a Lipschitz retract of ℓ_2 .

- ① If $Lip_0(\ell_2)$ is Grothendieck, then for any $d \in \mathbb{N}$ the space $Lip_0(\mathbb{R}^d)$ is Grothendieck, since \mathbb{R}^d is a Lipschitz retract of ℓ_2 .
- ② If $Lip_0(\ell_2)$ is not Grothendieck and one can find a separable infinite-dimensional Banach space E such that $Lip_0(E)$ is Grothendieck, then this would answer in negative a question (Candido, Cúth, Doučha) whether $Lip_0(\ell_2)$ is complemented in $Lip_0(F)$ for every separable infinite-dimensional Banach space F .