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P (D) =
∑
|α|≤m cαD

α ̸= 0 be a constant coefficient PDO (D = −i∇),

X ⊂ Rd open s.th.

P (D) : C∞(X) → C∞(X), g 7→ P (D)g =
∑
|α|≤m

cαD
αg

is surjective

Given data (fλ)λ ⊂ C∞(X) depending ”regularly” on a parameter λ:
∃uλ ∈ C∞(X), P (D)uλ = fλ s.th. (uλ)λ also depends regularly on λ?

(Regular: continuous, smooth, (real) analytic, (tempered) distributional, . . . )

Equip C∞(X) with its usual Fréchet space topology: (Kn)n∈N be a compact
exhaustion of X

∀n ∈ N : ∥g∥n := max
|α|≤n,x∈Kn

|Dαg(x)| (g ∈ C∞(X))

⇒ (∥ · ∥n)n∈N increasing sequence of seminorms on C∞(X), P (D) continuous
linear operator on C∞(X)
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E be a LCS, F = F (Λ) be a LCS of scalar-valued functions on a set Λ s.th.
F (Λ) ↪→ (C, | · |)Λ continuously.

We define

Fσ(Λ;E) :=
{
(xλ)λ∈Λ ∈ EΛ| ∀x′ ∈ E′ : λ 7→ ⟨x′, xλ⟩ ∈ F (Λ)

}
(E-valued functions which are weakly in F (Λ)) ⇒ ∀x = (xλ) ∈ Fσ(Λ;E)

Φ(x) : E′ → F (Λ), x′ 7→ (λ 7→ ⟨x′, xλ⟩) linear;

F (Λ;E) := {x ∈ Fσ(Λ;E)| ∀U ∈ U0(E) : Φ(x)(U◦) ⊂ F (Λ) relatively compact}
Then,

for many F (Λ) the space F (Λ;E) is the ”correct” E-valued version of F (Λ)
(e.g. F (Λ) = C(Λ) with Λ locally compact Hausdorff; F (Λ) = Ck(Λ) for
Λ ⊂ Rd open and k ∈ N ∪ {∞}; F (Λ) = O(Λ) for Λ ⊂ C open etc.)
E quasicomplete ⇒ Φ : F (Λ;E) → L(E′c, F (Λ)) is an isomorphism
(continuous linear operators from E′, equipped with topology of
unif. conv. on absolutely convex, compact subsets of E, into F (Λ))
F (Λ) semi-Montel with a web ⇒ Fσ(Λ;E) = F (Λ;E)

For LCS E,F , define EεF := L(E′c, F ), and for continuous linear T : E → E set

TεidF : EεF → EεF, TεidF (S) := S ◦ T t(= idF ◦ S ◦ T t);

for F = F (Λ) and quasicomplete E, with isomorphism Φ : F (Λ;E) → EεF (Λ),

F (Λ;E) → F (Λ;E), (xλ)λ∈Λ 7→ (T (xλ))λ∈Λ = Φ−1 ◦ TεidF (Λ) ◦ Φ ((xλ)λ∈Λ)
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Parameter dependence problem w.r.t. F :
Let P (D) : C∞(X) → C∞(X) be surjective; for which LCS F is the mapping
P (D)εidF : C∞(X)εF → C∞(X)εF surjective?

Abstract problem: E LCS, T : E → E surjective, linear, continuous; for which
LCS F is TεidF : EεF → EεF surjective?

Grothendieck (1955): E,F Fréchet, E is nuclear (e.g. E = C∞(X))
⇒ TεidF : EεF → EεF surjective.
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in particular for F ∈ {Ck(Λ),O(Λ),S (Rd)}
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in particular for F ∈ {Ck(Λ),O(Λ),S (Rd)}
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E be Fréchet, (∥ · ∥n)n∈N increasing sequence of seminorms defining its topology;
Bn := {x ∈ E; ∥x∥n ≤ 1}.

E has (Ω) :⇔

∀n∃m ≥ n∀ k ≥ m∃C, s > 0∀ ε ∈ (0, 1) : Bm ⊂ εBn +
C

εs
Bk

• independent of particular choice of (∥ · ∥n)n∈N

• linear topological invariant, inherited by quotients but not by closed subspaces

• examples: C∞(X),S (Rd),O(Λ) (Λ ⊆ C simply connected domain)

E has (DN) :⇔

∃n∀m ≥ n∃ k ≥ m,C > 0∀x ∈ E : ∥x∥2m ≤ C∥x∥n∥x∥k

• independent of particular choice of (∥ · ∥n)n∈N; interpolation-type property

• linear topological invariant, inherited by closed subspaces but not by quotients

• examples: S (Rd), O(Cd); non-examples: C∞(X), O(Dd)
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Theorem [6, Vogt-Wagner, 1975-1980]

E be nuclear Fréchet, T : E → E be surjective, linear, continuous. TFAE

(i) TεidS ′(R) : EεS ′(R) → EεS ′(R) is surjective.
(ii) kerT satisfies (Ω).

(iii) TεidF : EεF → EεF is surjective for every LCS F ∼=
∏

i∈I Fi with Fi a
Montel (DF)-space such that its strong dual space (Fi)

′
b has (DN).

Examples of F as in (iii): F = S ′(Rd), F = D ′(Λ)

Set C∞P (X) := kerP (D) = {g ∈ C∞(X)|P (D)g = 0}; if C∞P (X) satisfies (Ω),
the parameter dependence problem w.r.t. F (as in (iii)) has an affirmative solution.

Problem 1

Let P (D) : C∞(X) → C∞(X) be surjective. When does C∞P (X) satisfy (Ω)?
(⇔ When is P (D)εidS ′(R) : C

∞(X)εS ′(R) → C∞(X)εS ′(R) surjective?)

• Petzsche (1980): C∞P (X) has (Ω) for convex X and hypoelliptic P (D).

• Vogt (1983): C∞P (X) has (Ω) for arbitrary X and elliptic P (D).
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Modification of the problem:

Let P (D) : D ′(X) → D ′(X) be surjective. For which LCS F is the operator

P (D)εidF : D ′(X)εF → D ′(X)εF

surjective?

Initiated by Bonet and Domański in 2006.

A LCS E is called a PLS-space if it is the projective limit of a spectrum (En)n∈N
of LS-spaces, i.e. E = lim←n∈N En, where En = lim→N∈N En,N are inductive
limits of Banach spaces (En,N )N∈N with compact inclusions En,N ↪→ En,N+1

Examples: E = D ′(X), E = A (X); every nuclear Fréchet space is a PLS-space

A PLS-space E is said to have (PΩ) if (with Bj,L the closed unit ball in Ej,L)

∀n∃m ≥ n ∀ k ≥ m∃N ∀M ≥ N ∃K ≥ M ∃C, s > 0∀ ε ∈ (0, 1)

Bm,M ⊆ εBn,N +
C

εs
Bk,K

• independent of particular representation of E as PLS-space

• linear topological invariant, inherited by quotients but not by closed subspace. . .

• examples: E = D ′(X), E = A (X); nuclear Fréchet space satisfies (Ω) iff it
satisfies (PΩ)
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satisfies (PΩ)

Thomas Kalmes Linear topological invariants 7 / 12



Modification of the problem:

Let P (D) : D ′(X) → D ′(X) be surjective. For which LCS F is the operator

P (D)εidF : D ′(X)εF → D ′(X)εF

surjective? Initiated by Bonet and Domański in 2006.
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Theorem [1, Bonet, Domański, 2006]

E be a PLS-space, T : E → E be surjective, linear, continuous. TFAE

(i) TεidD′(R) : EεD ′(R) → EεD ′(R) is surjective.
(ii) kerT satisfies (PΩ).

(iii) TεidF : EεF → EεF is surjective for every LCS F ∼=
∏

i∈I Fi with Fi a
nuclear (DF)-space such that its strong dual space (Fi)

′
b satisfies (DN).

Examples for F as in (iii): F = S ′(Rd), F = D ′(Λ)

Set D ′P (X) := kerP (D) = {u ∈ D ′(X)|P (D)u = 0}; if D ′P (X) satisfies (PΩ),
the parameter dependence problem w.r.t. F (as in (iii)) has an affirmative solution
in distributional setting.

Problem 2

Let P (D) : D ′(X) → D ′(X) be surjective. When does D ′P (X) satisfy (PΩ)?
(⇔ When is P (D)εidD′(R) : D ′(X)εD ′(R) → D ′(X)εD ′(R) surjective?)

Schwartz kernel theorem: D ′(X)εD ′(R) ∼= D ′(X × R), and P (D)εidD′(R) is
P+(D) : D ′(X × R) → D ′(X × R), with P+(ξ1, . . . , ξd, ξd+1) = P (ξ1, . . . , ξd);
gives equivalent formulation of Problem 2:

P (D) :D ′(X) → D ′(X) surjective
?⇒ P+(D) :D ′(X ×R) → D ′(X ×R) surjective?
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Malgrange: for hypoelliptic P (D) it holds C∞P (X) = D ′P (X) as LCS and
P (D) : C∞(X) → C∞(X) surjective iff P (D) : D ′(X) → D ′(X) surjective

Theorem [3, 4, 5, K. 2012, 2019]

(a) For d ≥ 3 there is a hypoelliptic P (D) and a (non-convex) set X such that
P (D) : D ′(X) → D ′(X) is surjective and D ′P (X) does not satisfy (PΩ); so,
P (D) : C∞(X) → C∞(X) is surjective and C∞P (X) does not have (Ω).

(b) Let P (D) :D ′(X)→D ′(X) be surjective. Then, D ′P (X) satisfies (PΩ) if

(b-i) P (ξ1, . . . , ξd) = Q(ξ1, . . . , ξk) with 1 ≤ k ≤ d and Q elliptic.
(b-ii) P (D) is semi-elliptic with a single characteristic direction, e.g. a parabolic

operator.
(b-iii) P (D) factorizes into first order operators.
(b-iv) d = 2

For all operators in (b), surjectivity of P (D) on D ′(X) is equivalent to surjectivity
on C∞(X)!
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Theorem [2, Debrouwere, K. 2023]

(a) Let P (D) : C∞(X) → C∞(X) be surjective. If D ′P (X) has (PΩ), then
C∞P (X) has (Ω).

(b) Let P (D) : D ′(X) → D ′(X) be surjective. If C∞P (X) has (Ω), then D ′P (X)
has (PΩ).

Corollary [2, Debrouwere, K. 2023]

Let P (D) : C∞(X) → C∞(X) be surjective. Then, C∞P (X) satisfies (Ω) if

(i) X is convex.

(ii) P (ξ1, . . . , ξd) = Q(ξ1, . . . , ξk) with 1 ≤ k ≤ d and Q elliptic.

(iii) P (D) factorizes into first order operators.

(iv) d = 2
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Thank you for your attention!

HAPPY BIRTHDAY, PEPE!!!
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