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P(D) =24 <m oD # 0 be a constant coefficient PDO (D = —iV),
X C R? open s.th.

P(D): C*®(X) = C™(X),g— P(D)g= > caD%

. L lor|<m
IS surjective

Given data (f\)x C C°°(X) depending "regularly” on a parameter A:
Juy € C°(X), P(D)uy = fx s.th. (uy)x also depends regularly on A\?

(Regular: continuous, smooth, (real) analytic, (tempered) distributional, . ..)

Equip C*°(X) with its usual Fréchet space topology: (K, )ncn be a compact
exhaustion of X

VneN: |gln:= max [D%(z)| (9e€C™(X))
la|<n,zeK,

= (|| - ||n)nen increasing sequence of seminorms on C*°(X), P(D) continuous
linear operator on C*°(X)
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(continuous linear operators from E’, equipped with topology of
unif. conv. on absolutely convex, compact subsets of F, into F(A))
@ F(A) semi-Montel with a web = F,(A; E) = F(A; E)
For LCS E, F, define EcF := L(E., F'), and for continuous linear T : E — FE set

Teidp : EeF — EcF, Teidp(S) :=SoT! (=idpoSoT");
for F' = F(A) and quasicomplete E, with isomorphism ® : F(A; E) — EeF(A),
F(AE) = F(A E), (za)aea — (T(z2))rea = @71 o Teidp(a) o @ ((22)aen)
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Parameter dependence problem w.r.t. F:
Let P(D): C*(X) — C*°(X) be surjective; for which LCS F' is the mapping
P(D)eidp : C*°(X)eF — C>(X)eF surjective?
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Abstract problem: E LCS, T : E — FE surjective, linear, continuous; for which
LCS Fis Teidp : EeF — EeF surjective?

Grothendieck (1955): E, F' Fréchet, E is nuclear (e.g. E = C*(X))
= Teidp : FeF — EeF surjective.

= Parameter dependence problem has affirmative answer if F' is a Fréchet space,
in particular for F € {C*¥(A), O(A), ¥ (R%)}

What if F is the dual space of a Fréchet space (e.g. F' € {#/(R%),&'(A)}), or if
Fe{d(N),2'(MN}?
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E be Fréchet, (|| - ||n)nen increasing sequence of seminorms defining its topology;
B, :={z € E; |||, <1}.
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InVm >n3k>m,C>0Vx € E: |z|2, < Cllz|n]z|x

e independent of particular choice of (|| - ||»)nen; interpolation-type property
e linear topological invariant, inherited by closed subspaces but not by quotients

e examples: .7 (R%), O(C?); non-examples: C>°(X), O(D9)
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Theorem [6, Vogt-Wagner, 1975-1980]
FE be nuclear Fréchet, T': E — E be surjective, linear, continuous. TFAE
(i) Teid o (w) : Ee”'(R) — Ee”'(R) is surjective.
(i) kerT satisfies (£2).
(iii) Teidp : EeF — EeF is surjective for every LCS F = [],_; F; with F; a
Montel (DF)-space such that its strong dual space (F;); has (DN).

Examples of F as in (iii): F = .7'(R%), F = 2'(A)
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(& When is P(D)eid o () : C*(X)eS'(R) = C*(X)e'(R) surjective?)

e Petzsche (1980): C'%(X) has () for convex X and hypoelliptic P(D).

o Vogt (1983): O (X) has () for arbitrary X and elliptic P(D).
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Modification of the problem:
Let P(D): 2'(X) — 2'(X) be surjective. For which LCS F is the operator
P(D)eidp : 7' (X)eF — Z'(X)eF

surjective?
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Examples: £ = 2'(X), E = «/(X); every nuclear Fréchet space is a PLS-space
A PLS-space E is said to have (PS2) if (with Bj 1, the closed unit ball in E; 1)
Vnim>nVk>m3INVYM>NIK>MIC,s>0Ve € (0,1)

C
By € eBp N+ ;Bk,K
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surjective? Initiated by Bonet and Domanski in 2006.

A LCS E'is called a PLS-space if it is the projective limit of a spectrum (E),)nen
of LS-spaces, i.e. E =lim, pen E,,, where E,, = lim_, ey B, v are inductive
limits of Banach spaces (E,, n)nen with compact inclusions E,, n < Ej, n41

Examples: £ = 2'(X), E = «/(X); every nuclear Fréchet space is a PLS-space
A PLS-space E is said to have (PS2) if (with Bj 1, the closed unit ball in E; 1)
Vnim>nVk>m3INVYM>NIK>MIC,s>0Ve € (0,1)

C
By € eBp N+ ;Bk,K

e independent of particular representation of E as PLS-space
e linear topological invariant, inherited by quotients but not by closed subspace. ..

e examples: F = 2'(X),FE = o (X);
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A PLS-space E is said to have (PS2) if (with Bj 1, the closed unit ball in E; 1)
Vnim>nVk>m3INVYM>NIK>MIC,s>0Ve € (0,1)

C
By € eBp N+ ;Bk,K

e independent of particular representation of E as PLS-space
e linear topological invariant, inherited by quotients but not by closed subspace. ..

e examples: E = 2'(X),E = o/(X); nuclear Fréchet space satisfies (Q) iff it
satisfies (P{2)
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Theorem [1, Bonet, Domariski, 2006]
E be a PLS-space, T : E — E be surjective, linear, continuous. TFAE
(i) Teidg/(w) : EeZ'(R) — EeZ'(R) is surjective.
(ii) kerT satisfies (PS).
(iii) Teidp : EeF' — EeF is surjective for every LCS F' = [],_; F; with F; a
nuclear (DF)-space such that its strong dual space (F;); satisfies (DN).

Examples for F as in (ii): F =.7'(R%),F = 2'(A)
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(iii) Teidp : EeF' — EeF is surjective for every LCS F' = [],_; F; with F; a
nuclear (DF)-space such that its strong dual space (F;); satisfies (DN).

Examples for F as in (ii): F =.7'(R%),F = 2'(A)
Set 7p(X) := ker P(D) = {u € 7/(X)| P(D)u = 0};
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Set Zp(X) :=ker P(D) = {u € 2'(X)| P(D)u = 0}; if Z,(X) satisfies (P),
the parameter dependence problem w.r.t. F' (as in (iii)) has an affirmative solution
in distributional setting.
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(& When is P(D)cidg vy : 2'(X)eZ'(R) = 2'(X)e2'(R) surjective?)
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Let P(D): 2'(X) — 2'(X) be surjective. When does 24 (X) satisfy (PQ)?
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PH(D): 2'(X xR) = 2'(X x R), with PT(&,...,&4,&a11) = P(&1,. .., &)

Thomas Kalmes Linear topological invariants 8/12



Theorem [1, Bonet, Domariski, 2006]

E be a PLS-space, T : E — E be surjective, linear, continuous. TFAE
(i) Teidg/(w) : EeZ'(R) — EeZ'(R) is surjective.

(ii) kerT satisfies (PS).

(iii) Teidp : EeF' — EeF is surjective for every LCS F' = [],_; F; with F; a
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Examples for F as in (iii): F =.7'(R%), F = 2'(A)

Set Zp(X) :=ker P(D) = {u € 2'(X)| P(D)u = 0}; if Z,(X) satisfies (P),
the parameter dependence problem w.r.t. F' (as in (iii)) has an affirmative solution
in distributional setting.

Problem 2

Let P(D): 2'(X) — 2'(X) be surjective. When does 25 (X) satisfy (PQ)?
(& When is P(D)cidg vy : 2'(X)eZ'(R) = 2'(X)e2'(R) surjective?)

Schwartz kernel theorem: 2'(X)eZ'(R) =2 2'(X x R), and P(D)cidg(g) is

PY(D): 2'(X xR) = 2'(X x R), with PT(&1,..., &, Eav1) = P&, -, &a);

gives equivalent formulation of Problem 2:

P(D):2'(X) — 2'(X) surjective RS PH(D):2'X xR) — 2'(X xR surjective?
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Malgrange: for hypoelliptic P(D) it holds C¥(X) = 25(X) as LCS and
P(D): C*(X) — C>(X) surjective iff P(D) : 2'(X) — 2'(X) surjective
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Theorem [3, 4, 5, K. 2012, 2019]

(a) For d > 3 there is a hypoelliptic P(D) and a (non-convex) set X such that
P(D):2'(X) — 2'(X) is surjective and Z5(X) does not satisfy (P); so,
P(D): C*®(X) — C>(X) is surjective and C¥(X) does not have ().
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P(D): C*(X) — C>(X) surjective iff P(D) : 2'(X) — 2'(X) surjective

Theorem [3, 4, 5, K. 2012, 2019]

(a) For d > 3 there is a hypoelliptic P(D) and a (non-convex) set X such that
P(D):2'(X) — 2'(X) is surjective and Z5(X) does not satisfy (P); so,
P(D): C*®(X) — C>(X) is surjective and C¥(X) does not have ().

(b) Let P(D):2'(X)— 2'(X) be surjective. Then, Z5(X) satisfies (PQ) if
(b-1) P(&1,...,6q) = Q(&r,. .., &) with 1 < k < d and Q elliptic.

(b-ii) P(D) is semi-elliptic with a single characteristic direction, e.g. a parabolic
operator.

(b-iii) P(D) factorizes into first order operators.
(b-iv) d=2
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Theorem [3, 4, 5, K. 2012, 2019]

(a) For d > 3 there is a hypoelliptic P(D) and a (non-convex) set X such that
P(D):2'(X) — 2'(X) is surjective and Z5(X) does not satisfy (P); so,
P(D): C*®(X) — C>(X) is surjective and C¥(X) does not have ().

(b) Let P(D):2'(X)— 2'(X) be surjective. Then, Z5(X) satisfies (PQ) if
(b-1) P(&1,...,6q) = Q(&r,. .., &) with 1 < k < d and Q elliptic.

(b-ii) P(D) is semi-elliptic with a single characteristic direction, e.g. a parabolic

operator.
(b-iii) P(D) factorizes into first order operators.

(b-iv) d=2
For all operators in (b), surjectivity of P(D) on 2’'(X) is equivalent to surjectivity
on C™(X)!
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Theorem [2, Debrouwere, K. 2023]

(a) Let P(D): C®(X) — C°°(X) be surjective. If 25(X) has (PQ), then
C®(X) has ().
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Theorem [2, Debrouwere, K. 2023]

(a) Let P(D): C®(X) — C°°(X) be surjective. If 25(X) has (PQ), then
C®(X) has ().

(b) Let P(D) : 2'(X) — 2'(X) be surjective. If CZ(X) has (), then 25 (X)
has (PQ).
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Theorem [2, Debrouwere, K. 2023]

(a) Let P(D): C®(X) — C°°(X) be surjective. If 25(X) has (PQ), then
C®(X) has ().

(b) Let P(D) : 2'(X) — 2'(X) be surjective. If CZ(X) has (), then 25 (X)
has (PS2).

Corollary [2, Debrouwere, K. 2023]
Let P(D) : C*°(X) — C*°(X) be surjective. Then, C¥ (X) satisfies (12) if
(i) X is convex.

(i) P(&1y---580) = Q&1 .-, &) with 1 < k < d and Q elliptic.
(iii) P(D) factorizes into first order operators.
(iv) d=2
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Thank you for your attention!

HAPPY BIRTHDAY, PEPE!!
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