

Linear topological invariants for kernels of differential operators

Thomas Kalmes

Partly joint work with A. Debrouwere (Vrije Universiteit Brussel, Belgium)

International Workshop on Functional Analysis
On the Occasion of the 70th Birthday of José Bonet

Valencia, June 2025

$P(D) = \sum_{|\alpha| \leq m} c_\alpha D^\alpha \neq 0$ be a constant coefficient PDO ($D = -i\nabla$),

$X \subset \mathbb{R}^d$ open s.th.

$$P(D) : C^\infty(X) \rightarrow C^\infty(X), g \mapsto P(D)g = \sum_{|\alpha| \leq m} c_\alpha D^\alpha g$$

is surjective

$P(D) = \sum_{|\alpha| \leq m} c_\alpha D^\alpha \neq 0$ be a constant coefficient PDO ($D = -i\nabla$),

$X \subset \mathbb{R}^d$ open s.th.

$$P(D) : C^\infty(X) \rightarrow C^\infty(X), g \mapsto P(D)g = \sum_{|\alpha| \leq m} c_\alpha D^\alpha g$$

is surjective

Given data $(f_\lambda)_\lambda \subset C^\infty(X)$ depending "regularly" on a parameter λ :
 $\exists u_\lambda \in C^\infty(X), P(D)u_\lambda = f_\lambda$ s.th. $(u_\lambda)_\lambda$ also depends regularly on λ ?

$P(D) = \sum_{|\alpha| \leq m} c_\alpha D^\alpha \neq 0$ be a constant coefficient PDO ($D = -i\nabla$),

$X \subset \mathbb{R}^d$ open s.th.

$$P(D) : C^\infty(X) \rightarrow C^\infty(X), g \mapsto P(D)g = \sum_{|\alpha| \leq m} c_\alpha D^\alpha g$$

is surjective

Given data $(f_\lambda)_\lambda \subset C^\infty(X)$ depending "regularly" on a parameter λ :
 $\exists u_\lambda \in C^\infty(X), P(D)u_\lambda = f_\lambda$ s.th. $(u_\lambda)_\lambda$ also depends regularly on λ ?

(Regular: continuous, smooth, (real) analytic, (tempered) distributional, ...)

$P(D) = \sum_{|\alpha| \leq m} c_\alpha D^\alpha \neq 0$ be a constant coefficient PDO ($D = -i\nabla$),

$X \subset \mathbb{R}^d$ open s.th.

$$P(D) : C^\infty(X) \rightarrow C^\infty(X), g \mapsto P(D)g = \sum_{|\alpha| \leq m} c_\alpha D^\alpha g$$

is surjective

Given data $(f_\lambda)_\lambda \subset C^\infty(X)$ depending "regularly" on a parameter λ :
 $\exists u_\lambda \in C^\infty(X), P(D)u_\lambda = f_\lambda$ s.th. $(u_\lambda)_\lambda$ also depends regularly on λ ?

(Regular: continuous, smooth, (real) analytic, (tempered) distributional, ...)

Equip $C^\infty(X)$ with its usual Fréchet space topology: $(K_n)_{n \in \mathbb{N}}$ be a compact exhaustion of X

$$\forall n \in \mathbb{N} : \|g\|_n := \max_{|\alpha| \leq n, x \in K_n} |D^\alpha g(x)| \quad (g \in C^\infty(X))$$

$\Rightarrow (\|\cdot\|_n)_{n \in \mathbb{N}}$ increasing sequence of seminorms on $C^\infty(X)$, $P(D)$ continuous linear operator on $C^\infty(X)$

E be a LCS, $F = F(\Lambda)$ be a LCS of scalar-valued functions on a set Λ s.th.
 $F(\Lambda) \hookrightarrow (\mathbb{C}, |\cdot|)^\Lambda$ continuously.

E be a LCS, $F = F(\Lambda)$ be a LCS of scalar-valued functions on a set Λ s.th.
 $F(\Lambda) \hookrightarrow (\mathbb{C}, |\cdot|)^\Lambda$ continuously. We define

$$F_\sigma(\Lambda; E) := \{(x_\lambda)_{\lambda \in \Lambda} \in E^\Lambda \mid \forall x' \in E' : \lambda \mapsto \langle x', x_\lambda \rangle \in F(\Lambda)\}$$

(E -valued functions which are weakly in $F(\Lambda)$)

E be a LCS, $F = F(\Lambda)$ be a LCS of scalar-valued functions on a set Λ s.th. $F(\Lambda) \hookrightarrow (\mathbb{C}, |\cdot|)^\Lambda$ continuously. We define

$$F_\sigma(\Lambda; E) := \{(x_\lambda)_{\lambda \in \Lambda} \in E^\Lambda \mid \forall x' \in E' : \lambda \mapsto \langle x', x_\lambda \rangle \in F(\Lambda)\}$$

(E -valued functions which are weakly in $F(\Lambda)$) $\Rightarrow \forall x = (x_\lambda) \in F_\sigma(\Lambda; E)$

$$\Phi(x) : E' \rightarrow F(\Lambda), x' \mapsto (\lambda \mapsto \langle x', x_\lambda \rangle) \quad \text{linear};$$

E be a LCS, $F = F(\Lambda)$ be a LCS of scalar-valued functions on a set Λ s.th. $F(\Lambda) \hookrightarrow (\mathbb{C}, |\cdot|)^\Lambda$ continuously. We define

$$F_\sigma(\Lambda; E) := \{(x_\lambda)_{\lambda \in \Lambda} \in E^\Lambda \mid \forall x' \in E' : \lambda \mapsto \langle x', x_\lambda \rangle \in F(\Lambda)\}$$

(E -valued functions which are weakly in $F(\Lambda)$) $\Rightarrow \forall x = (x_\lambda) \in F_\sigma(\Lambda; E)$

$$\Phi(x) : E' \rightarrow F(\Lambda), x' \mapsto (\lambda \mapsto \langle x', x_\lambda \rangle) \quad \text{linear};$$

$$F(\Lambda; E) := \{x \in F_\sigma(\Lambda; E) \mid \forall U \in \mathfrak{U}_0(E) : \Phi(x)(U^\circ) \subset F(\Lambda) \text{ relatively compact}\}$$

E be a LCS, $F = F(\Lambda)$ be a LCS of scalar-valued functions on a set Λ s.th. $F(\Lambda) \hookrightarrow (\mathbb{C}, |\cdot|)^\Lambda$ continuously. We define

$$F_\sigma(\Lambda; E) := \{(x_\lambda)_{\lambda \in \Lambda} \in E^\Lambda \mid \forall x' \in E' : \lambda \mapsto \langle x', x_\lambda \rangle \in F(\Lambda)\}$$

(E -valued functions which are weakly in $F(\Lambda)$) $\Rightarrow \forall x = (x_\lambda) \in F_\sigma(\Lambda; E)$

$$\Phi(x) : E' \rightarrow F(\Lambda), x' \mapsto (\lambda \mapsto \langle x', x_\lambda \rangle) \quad \text{linear};$$

$$F(\Lambda; E) := \{x \in F_\sigma(\Lambda; E) \mid \forall U \in \mathfrak{U}_0(E) : \Phi(x)(U^\circ) \subset F(\Lambda) \text{ relatively compact}\}$$

Then,

- for many $F(\Lambda)$ the space $F(\Lambda; E)$ is the "correct" E -valued version of $F(\Lambda)$ (e.g. $F(\Lambda) = C(\Lambda)$ with Λ locally compact Hausdorff; $F(\Lambda) = C^k(\Lambda)$ for $\Lambda \subset \mathbb{R}^d$ open and $k \in \mathbb{N} \cup \{\infty\}$; $F(\Lambda) = \mathcal{O}(\Lambda)$ for $\Lambda \subset \mathbb{C}$ open etc.)

E be a LCS, $F = F(\Lambda)$ be a LCS of scalar-valued functions on a set Λ s.th. $F(\Lambda) \hookrightarrow (\mathbb{C}, |\cdot|)^\Lambda$ continuously. We define

$$F_\sigma(\Lambda; E) := \{(x_\lambda)_{\lambda \in \Lambda} \in E^\Lambda \mid \forall x' \in E' : \lambda \mapsto \langle x', x_\lambda \rangle \in F(\Lambda)\}$$

(E -valued functions which are weakly in $F(\Lambda)$) $\Rightarrow \forall x = (x_\lambda) \in F_\sigma(\Lambda; E)$

$$\Phi(x) : E' \rightarrow F(\Lambda), x' \mapsto (\lambda \mapsto \langle x', x_\lambda \rangle) \quad \text{linear};$$

$$F(\Lambda; E) := \{x \in F_\sigma(\Lambda; E) \mid \forall U \in \mathfrak{U}_0(E) : \Phi(x)(U^\circ) \subset F(\Lambda) \text{ relatively compact}\}$$

Then,

- for many $F(\Lambda)$ the space $F(\Lambda; E)$ is the "correct" E -valued version of $F(\Lambda)$ (e.g. $F(\Lambda) = C(\Lambda)$ with Λ locally compact Hausdorff; $F(\Lambda) = C^k(\Lambda)$ for $\Lambda \subset \mathbb{R}^d$ open and $k \in \mathbb{N} \cup \{\infty\}$; $F(\Lambda) = \mathcal{O}(\Lambda)$ for $\Lambda \subset \mathbb{C}$ open etc.)
- E quasicomplete $\Rightarrow \Phi : F(\Lambda; E) \rightarrow L(E'_c, F(\Lambda))$ is an isomorphism (continuous linear operators from E' , equipped with topology of unif. conv. on absolutely convex, compact subsets of E , into $F(\Lambda)$)

E be a LCS, $F = F(\Lambda)$ be a LCS of scalar-valued functions on a set Λ s.th. $F(\Lambda) \hookrightarrow (\mathbb{C}, |\cdot|)^\Lambda$ continuously. We define

$$F_\sigma(\Lambda; E) := \{(x_\lambda)_{\lambda \in \Lambda} \in E^\Lambda \mid \forall x' \in E' : \lambda \mapsto \langle x', x_\lambda \rangle \in F(\Lambda)\}$$

(E -valued functions which are weakly in $F(\Lambda)$) $\Rightarrow \forall x = (x_\lambda) \in F_\sigma(\Lambda; E)$

$$\Phi(x) : E' \rightarrow F(\Lambda), x' \mapsto (\lambda \mapsto \langle x', x_\lambda \rangle) \quad \text{linear};$$

$$F(\Lambda; E) := \{x \in F_\sigma(\Lambda; E) \mid \forall U \in \mathfrak{U}_0(E) : \Phi(x)(U^\circ) \subset F(\Lambda) \text{ relatively compact}\}$$

Then,

- for many $F(\Lambda)$ the space $F(\Lambda; E)$ is the "correct" E -valued version of $F(\Lambda)$ (e.g. $F(\Lambda) = C(\Lambda)$ with Λ locally compact Hausdorff; $F(\Lambda) = C^k(\Lambda)$ for $\Lambda \subset \mathbb{R}^d$ open and $k \in \mathbb{N} \cup \{\infty\}$; $F(\Lambda) = \mathcal{O}(\Lambda)$ for $\Lambda \subset \mathbb{C}$ open etc.)
- E quasicomplete $\Rightarrow \Phi : F(\Lambda; E) \rightarrow L(E'_c, F(\Lambda))$ is an isomorphism (continuous linear operators from E' , equipped with topology of unif. conv. on absolutely convex, compact subsets of E , into $F(\Lambda)$)
- $F(\Lambda)$ semi-Montel with a web $\Rightarrow F_\sigma(\Lambda; E) = F(\Lambda; E)$

E be a LCS, $F = F(\Lambda)$ be a LCS of scalar-valued functions on a set Λ s.th. $F(\Lambda) \hookrightarrow (\mathbb{C}, |\cdot|)^\Lambda$ continuously. We define

$$F_\sigma(\Lambda; E) := \{(x_\lambda)_{\lambda \in \Lambda} \in E^\Lambda \mid \forall x' \in E' : \lambda \mapsto \langle x', x_\lambda \rangle \in F(\Lambda)\}$$

(E -valued functions which are weakly in $F(\Lambda)$) $\Rightarrow \forall x = (x_\lambda) \in F_\sigma(\Lambda; E)$

$$\Phi(x) : E' \rightarrow F(\Lambda), x' \mapsto (\lambda \mapsto \langle x', x_\lambda \rangle) \quad \text{linear};$$

$$F(\Lambda; E) := \{x \in F_\sigma(\Lambda; E) \mid \forall U \in \mathfrak{U}_0(E) : \Phi(x)(U^\circ) \subset F(\Lambda) \text{ relatively compact}\}$$

Then,

- for many $F(\Lambda)$ the space $F(\Lambda; E)$ is the "correct" E -valued version of $F(\Lambda)$ (e.g. $F(\Lambda) = C(\Lambda)$ with Λ locally compact Hausdorff; $F(\Lambda) = C^k(\Lambda)$ for $\Lambda \subset \mathbb{R}^d$ open and $k \in \mathbb{N} \cup \{\infty\}$; $F(\Lambda) = \mathcal{O}(\Lambda)$ for $\Lambda \subset \mathbb{C}$ open etc.)
- E quasicomplete $\Rightarrow \Phi : F(\Lambda; E) \rightarrow L(E'_c, F(\Lambda))$ is an isomorphism (continuous linear operators from E' , equipped with topology of unif. conv. on absolutely convex, compact subsets of E , into $F(\Lambda)$)
- $F(\Lambda)$ semi-Montel with a web $\Rightarrow F_\sigma(\Lambda; E) = F(\Lambda; E)$

For LCS E, F , define $E \varepsilon F := L(E'_c, F)$,

E be a LCS, $F = F(\Lambda)$ be a LCS of scalar-valued functions on a set Λ s.th. $F(\Lambda) \hookrightarrow (\mathbb{C}, |\cdot|)^\Lambda$ continuously. We define

$$F_\sigma(\Lambda; E) := \{(x_\lambda)_{\lambda \in \Lambda} \in E^\Lambda \mid \forall x' \in E' : \lambda \mapsto \langle x', x_\lambda \rangle \in F(\Lambda)\}$$

(E -valued functions which are weakly in $F(\Lambda)$) $\Rightarrow \forall x = (x_\lambda) \in F_\sigma(\Lambda; E)$

$$\Phi(x) : E' \rightarrow F(\Lambda), x' \mapsto (\lambda \mapsto \langle x', x_\lambda \rangle) \quad \text{linear};$$

$$F(\Lambda; E) := \{x \in F_\sigma(\Lambda; E) \mid \forall U \in \mathfrak{U}_0(E) : \Phi(x)(U^\circ) \subset F(\Lambda) \text{ relatively compact}\}$$

Then,

- for many $F(\Lambda)$ the space $F(\Lambda; E)$ is the "correct" E -valued version of $F(\Lambda)$ (e.g. $F(\Lambda) = C(\Lambda)$ with Λ locally compact Hausdorff; $F(\Lambda) = C^k(\Lambda)$ for $\Lambda \subset \mathbb{R}^d$ open and $k \in \mathbb{N} \cup \{\infty\}$; $F(\Lambda) = \mathcal{O}(\Lambda)$ for $\Lambda \subset \mathbb{C}$ open etc.)
- E quasicomplete $\Rightarrow \Phi : F(\Lambda; E) \rightarrow L(E'_c, F(\Lambda))$ is an isomorphism (continuous linear operators from E' , equipped with topology of unif. conv. on absolutely convex, compact subsets of E , into $F(\Lambda)$)
- $F(\Lambda)$ semi-Montel with a web $\Rightarrow F_\sigma(\Lambda; E) = F(\Lambda; E)$

For LCS E, F , define $E\varepsilon F := L(E'_c, F)$, and for continuous linear $T : E \rightarrow E$ set

$$T\varepsilon \text{id}_F : E\varepsilon F \rightarrow E\varepsilon F, \quad T\varepsilon \text{id}_F(S) := S \circ T^t (= \text{id}_F \circ S \circ T^t);$$

E be a LCS, $F = F(\Lambda)$ be a LCS of scalar-valued functions on a set Λ s.th. $F(\Lambda) \hookrightarrow (\mathbb{C}, |\cdot|)^\Lambda$ continuously. We define

$$F_\sigma(\Lambda; E) := \{(x_\lambda)_{\lambda \in \Lambda} \in E^\Lambda \mid \forall x' \in E' : \lambda \mapsto \langle x', x_\lambda \rangle \in F(\Lambda)\}$$

(E -valued functions which are weakly in $F(\Lambda)$) $\Rightarrow \forall x = (x_\lambda) \in F_\sigma(\Lambda; E)$

$$\Phi(x) : E' \rightarrow F(\Lambda), x' \mapsto (\lambda \mapsto \langle x', x_\lambda \rangle) \quad \text{linear};$$

$$F(\Lambda; E) := \{x \in F_\sigma(\Lambda; E) \mid \forall U \in \mathfrak{U}_0(E) : \Phi(x)(U^\circ) \subset F(\Lambda) \text{ relatively compact}\}$$

Then,

- for many $F(\Lambda)$ the space $F(\Lambda; E)$ is the "correct" E -valued version of $F(\Lambda)$ (e.g. $F(\Lambda) = C(\Lambda)$ with Λ locally compact Hausdorff; $F(\Lambda) = C^k(\Lambda)$ for $\Lambda \subset \mathbb{R}^d$ open and $k \in \mathbb{N} \cup \{\infty\}$; $F(\Lambda) = \mathcal{O}(\Lambda)$ for $\Lambda \subset \mathbb{C}$ open etc.)
- E quasicomplete $\Rightarrow \Phi : F(\Lambda; E) \rightarrow L(E'_c, F(\Lambda))$ is an isomorphism (continuous linear operators from E' , equipped with topology of unif. conv. on absolutely convex, compact subsets of E , into $F(\Lambda)$)
- $F(\Lambda)$ semi-Montel with a web $\Rightarrow F_\sigma(\Lambda; E) = F(\Lambda; E)$

For LCS E, F , define $E\varepsilon F := L(E'_c, F)$, and for continuous linear $T : E \rightarrow E$ set

$$T\varepsilon \text{id}_F : E\varepsilon F \rightarrow E\varepsilon F, \quad T\varepsilon \text{id}_F(S) := S \circ T^t (= \text{id}_F \circ S \circ T^t);$$

for $F = F(\Lambda)$ and quasicomplete E , with isomorphism $\Phi : F(\Lambda; E) \rightarrow E\varepsilon F(\Lambda)$, $F(\Lambda; E) \rightarrow F(\Lambda; E)$, $(x_\lambda)_{\lambda \in \Lambda} \mapsto (T(x_\lambda))_{\lambda \in \Lambda} = \Phi^{-1} \circ T\varepsilon \text{id}_{F(\Lambda)} \circ \Phi((x_\lambda)_{\lambda \in \Lambda})$

Parameter dependence problem w.r.t. F :

Let $P(D) : C^\infty(X) \rightarrow C^\infty(X)$ be surjective; for which LCS F is the mapping $P(D)\varepsilon\text{id}_F : C^\infty(X)\varepsilon F \rightarrow C^\infty(X)\varepsilon F$ surjective?

Parameter dependence problem w.r.t. F :

Let $P(D) : C^\infty(X) \rightarrow C^\infty(X)$ be surjective; for which LCS F is the mapping $P(D)\varepsilon\text{id}_F : C^\infty(X)\varepsilon F \rightarrow C^\infty(X)\varepsilon F$ surjective?

Abstract problem: E LCS, $T : E \rightarrow E$ surjective, linear, continuous; for which LCS F is $T\varepsilon\text{id}_F : E\varepsilon F \rightarrow E\varepsilon F$ surjective?

Parameter dependence problem w.r.t. F :

Let $P(D) : C^\infty(X) \rightarrow C^\infty(X)$ be surjective; for which LCS F is the mapping $P(D)\varepsilon\text{id}_F : C^\infty(X)\varepsilon F \rightarrow C^\infty(X)\varepsilon F$ surjective?

Abstract problem: E LCS, $T : E \rightarrow E$ surjective, linear, continuous; for which LCS F is $T\varepsilon\text{id}_F : E\varepsilon F \rightarrow E\varepsilon F$ surjective?

Grothendieck (1955): E, F Fréchet, E is nuclear (e.g. $E = C^\infty(X)$)
 $\Rightarrow T\varepsilon\text{id}_F : E\varepsilon F \rightarrow E\varepsilon F$ surjective.

Parameter dependence problem w.r.t. F :

Let $P(D) : C^\infty(X) \rightarrow C^\infty(X)$ be surjective; for which LCS F is the mapping $P(D)\varepsilon\text{id}_F : C^\infty(X)\varepsilon F \rightarrow C^\infty(X)\varepsilon F$ surjective?

Abstract problem: E LCS, $T : E \rightarrow E$ surjective, linear, continuous; for which LCS F is $T\varepsilon\text{id}_F : E\varepsilon F \rightarrow E\varepsilon F$ surjective?

Grothendieck (1955): E, F Fréchet, E is nuclear (e.g. $E = C^\infty(X)$)
 $\Rightarrow T\varepsilon\text{id}_F : E\varepsilon F \rightarrow E\varepsilon F$ surjective.

\Rightarrow Parameter dependence problem has affirmative answer if F is a Fréchet space, in particular for $F \in \{C^k(\Lambda), \mathcal{O}(\Lambda), \mathcal{S}(\mathbb{R}^d)\}$

Parameter dependence problem w.r.t. F :

Let $P(D) : C^\infty(X) \rightarrow C^\infty(X)$ be surjective; for which LCS F is the mapping $P(D)\varepsilon\text{id}_F : C^\infty(X)\varepsilon F \rightarrow C^\infty(X)\varepsilon F$ surjective?

Abstract problem: E LCS, $T : E \rightarrow E$ surjective, linear, continuous; for which LCS F is $T\varepsilon\text{id}_F : E\varepsilon F \rightarrow E\varepsilon F$ surjective?

Grothendieck (1955): E, F Fréchet, E is nuclear (e.g. $E = C^\infty(X)$)
 $\Rightarrow T\varepsilon\text{id}_F : E\varepsilon F \rightarrow E\varepsilon F$ surjective.

\Rightarrow Parameter dependence problem has affirmative answer if F is a Fréchet space, in particular for $F \in \{C^k(\Lambda), \mathcal{O}(\Lambda), \mathcal{S}(\mathbb{R}^d)\}$

What if F is the dual space of a Fréchet space (e.g. $F \in \{\mathcal{S}'(\mathbb{R}^d), \mathcal{E}'(\Lambda)\}$), or if $F \in \{\mathcal{A}(\Lambda), \mathcal{D}'(\Lambda)\}$?

E be Fréchet, $(\|\cdot\|_n)_{n \in \mathbb{N}}$ increasing sequence of seminorms defining its topology;
 $B_n := \{x \in E; \|x\|_n \leq 1\}$.

E be Fréchet, $(\|\cdot\|_n)_{n \in \mathbb{N}}$ increasing sequence of seminorms defining its topology;
 $B_n := \{x \in E; \|x\|_n \leq 1\}$.

E has (Ω) : \Leftrightarrow

$$\forall n \exists m \geq n \forall k \geq m \exists C, s > 0 \forall \varepsilon \in (0, 1) : B_m \subset \varepsilon B_n + \frac{C}{\varepsilon^s} B_k$$

E be Fréchet, $(\|\cdot\|_n)_{n \in \mathbb{N}}$ increasing sequence of seminorms defining its topology;
 $B_n := \{x \in E; \|x\|_n \leq 1\}$.

E has (Ω) : \Leftrightarrow

$$\forall n \exists m \geq n \forall k \geq m \exists C, s > 0 \forall \varepsilon \in (0, 1) : B_m \subset \varepsilon B_n + \frac{C}{\varepsilon^s} B_k$$

- independent of particular choice of $(\|\cdot\|_n)_{n \in \mathbb{N}}$

E be Fréchet, $(\|\cdot\|_n)_{n \in \mathbb{N}}$ increasing sequence of seminorms defining its topology;
 $B_n := \{x \in E; \|x\|_n \leq 1\}$.

E has (Ω) : \Leftrightarrow

$$\forall n \exists m \geq n \forall k \geq m \exists C, s > 0 \forall \varepsilon \in (0, 1) : B_m \subset \varepsilon B_n + \frac{C}{\varepsilon^s} B_k$$

- independent of particular choice of $(\|\cdot\|_n)_{n \in \mathbb{N}}$
- linear topological invariant, inherited by quotients but not by closed subspaces

E be Fréchet, $(\|\cdot\|_n)_{n \in \mathbb{N}}$ increasing sequence of seminorms defining its topology;
 $B_n := \{x \in E; \|x\|_n \leq 1\}$.

E has (Ω) : \Leftrightarrow

$$\forall n \exists m \geq n \forall k \geq m \exists C, s > 0 \forall \varepsilon \in (0, 1) : B_m \subset \varepsilon B_n + \frac{C}{\varepsilon^s} B_k$$

- independent of particular choice of $(\|\cdot\|_n)_{n \in \mathbb{N}}$
- linear topological invariant, inherited by quotients but not by closed subspaces
- examples: $C^\infty(X)$, $\mathcal{S}(\mathbb{R}^d)$, $\mathcal{O}(\Lambda)$ ($\Lambda \subseteq \mathbb{C}$ simply connected domain)

E be Fréchet, $(\|\cdot\|_n)_{n \in \mathbb{N}}$ increasing sequence of seminorms defining its topology;
 $B_n := \{x \in E; \|x\|_n \leq 1\}$.

E has (Ω) : \Leftrightarrow

$$\forall n \exists m \geq n \forall k \geq m \exists C, s > 0 \forall \varepsilon \in (0, 1) : B_m \subset \varepsilon B_n + \frac{C}{\varepsilon^s} B_k$$

- independent of particular choice of $(\|\cdot\|_n)_{n \in \mathbb{N}}$
- linear topological invariant, inherited by quotients but not by closed subspaces
- examples: $C^\infty(X), \mathcal{S}(\mathbb{R}^d), \mathcal{O}(\Lambda)$ ($\Lambda \subseteq \mathbb{C}$ simply connected domain)

E has (DN) : \Leftrightarrow

$$\exists n \forall m \geq n \exists k \geq m, C > 0 \forall x \in E : \|x\|_m^2 \leq C \|x\|_n \|x\|_k$$

E be Fréchet, $(\|\cdot\|_n)_{n \in \mathbb{N}}$ increasing sequence of seminorms defining its topology;
 $B_n := \{x \in E; \|x\|_n \leq 1\}$.

E has (Ω) : \Leftrightarrow

$$\forall n \exists m \geq n \forall k \geq m \exists C, s > 0 \forall \varepsilon \in (0, 1) : B_m \subset \varepsilon B_n + \frac{C}{\varepsilon^s} B_k$$

- independent of particular choice of $(\|\cdot\|_n)_{n \in \mathbb{N}}$
- linear topological invariant, inherited by quotients but not by closed subspaces
- examples: $C^\infty(X)$, $\mathcal{S}(\mathbb{R}^d)$, $\mathcal{O}(\Lambda)$ ($\Lambda \subseteq \mathbb{C}$ simply connected domain)

E has (DN) : \Leftrightarrow

$$\exists n \forall m \geq n \exists k \geq m, C > 0 \forall x \in E : \|x\|_m^2 \leq C \|x\|_n \|x\|_k$$

- independent of particular choice of $(\|\cdot\|_n)_{n \in \mathbb{N}}$; interpolation-type property

E be Fréchet, $(\|\cdot\|_n)_{n \in \mathbb{N}}$ increasing sequence of seminorms defining its topology;
 $B_n := \{x \in E; \|x\|_n \leq 1\}$.

E has (Ω) : \Leftrightarrow

$$\forall n \exists m \geq n \forall k \geq m \exists C, s > 0 \forall \varepsilon \in (0, 1) : B_m \subset \varepsilon B_n + \frac{C}{\varepsilon^s} B_k$$

- independent of particular choice of $(\|\cdot\|_n)_{n \in \mathbb{N}}$
- linear topological invariant, inherited by quotients but not by closed subspaces
- examples: $C^\infty(X)$, $\mathcal{S}(\mathbb{R}^d)$, $\mathcal{O}(\Lambda)$ ($\Lambda \subseteq \mathbb{C}$ simply connected domain)

E has (DN) : \Leftrightarrow

$$\exists n \forall m \geq n \exists k \geq m, C > 0 \forall x \in E : \|x\|_m^2 \leq C \|x\|_n \|x\|_k$$

- independent of particular choice of $(\|\cdot\|_n)_{n \in \mathbb{N}}$; interpolation-type property
- linear topological invariant, inherited by closed subspaces but not by quotients

E be Fréchet, $(\|\cdot\|_n)_{n \in \mathbb{N}}$ increasing sequence of seminorms defining its topology;
 $B_n := \{x \in E; \|x\|_n \leq 1\}$.

E has (Ω) : \Leftrightarrow

$$\forall n \exists m \geq n \forall k \geq m \exists C, s > 0 \forall \varepsilon \in (0, 1) : B_m \subset \varepsilon B_n + \frac{C}{\varepsilon^s} B_k$$

- independent of particular choice of $(\|\cdot\|_n)_{n \in \mathbb{N}}$
- linear topological invariant, inherited by quotients but not by closed subspaces
- examples: $C^\infty(X)$, $\mathcal{S}(\mathbb{R}^d)$, $\mathcal{O}(\Lambda)$ ($\Lambda \subseteq \mathbb{C}$ simply connected domain)

E has (DN) : \Leftrightarrow

$$\exists n \forall m \geq n \exists k \geq m, C > 0 \forall x \in E : \|x\|_m^2 \leq C \|x\|_n \|x\|_k$$

- independent of particular choice of $(\|\cdot\|_n)_{n \in \mathbb{N}}$; interpolation-type property
- linear topological invariant, inherited by closed subspaces but not by quotients
- examples: $\mathcal{S}(\mathbb{R}^d)$, $\mathcal{O}(\mathbb{C}^d)$; non-examples: $C^\infty(X)$, $\mathcal{O}(\mathbb{D}^d)$

Theorem [6, Vogt-Wagner, 1975-1980]

E be nuclear Fréchet, $T : E \rightarrow E$ be surjective, linear, continuous. TFAE

- (i) $T\varepsilon \text{id}_{\mathcal{S}'(\mathbb{R})} : E\varepsilon \mathcal{S}'(\mathbb{R}) \rightarrow E\varepsilon \mathcal{S}'(\mathbb{R})$ is surjective.
- (ii) $\ker T$ satisfies (Ω) .
- (iii) $T\varepsilon \text{id}_F : E\varepsilon F \rightarrow E\varepsilon F$ is surjective for every LCS $F \cong \prod_{i \in I} F_i$ with F_i a Montel (DF)-space such that its strong dual space $(F_i)'_b$ has (DN).

Examples of F as in (iii): $F = \mathcal{S}'(\mathbb{R}^d)$, $F = \mathcal{D}'(\Lambda)$

Theorem [6, Vogt-Wagner, 1975-1980]

E be nuclear Fréchet, $T : E \rightarrow E$ be surjective, linear, continuous. TFAE

- (i) $T\varepsilon \text{id}_{\mathcal{S}'(\mathbb{R})} : E\varepsilon \mathcal{S}'(\mathbb{R}) \rightarrow E\varepsilon \mathcal{S}'(\mathbb{R})$ is surjective.
- (ii) $\ker T$ satisfies (Ω) .
- (iii) $T\varepsilon \text{id}_F : E\varepsilon F \rightarrow E\varepsilon F$ is surjective for every LCS $F \cong \prod_{i \in I} F_i$ with F_i a Montel (DF)-space such that its strong dual space $(F_i)'_b$ has (DN).

Examples of F as in (iii): $F = \mathcal{S}'(\mathbb{R}^d)$, $F = \mathcal{D}'(\Lambda)$

Set $C_P^\infty(X) := \ker P(D) = \{g \in C^\infty(X) \mid P(D)g = 0\}$;

Theorem [6, Vogt-Wagner, 1975-1980]

E be nuclear Fréchet, $T : E \rightarrow E$ be surjective, linear, continuous. TFAE

- (i) $T\varepsilon \text{id}_{\mathcal{S}'(\mathbb{R})} : E\varepsilon \mathcal{S}'(\mathbb{R}) \rightarrow E\varepsilon \mathcal{S}'(\mathbb{R})$ is surjective.
- (ii) $\ker T$ satisfies (Ω) .
- (iii) $T\varepsilon \text{id}_F : E\varepsilon F \rightarrow E\varepsilon F$ is surjective for every LCS $F \cong \prod_{i \in I} F_i$ with F_i a Montel (DF)-space such that its strong dual space $(F_i)'_b$ has (DN).

Examples of F as in (iii): $F = \mathcal{S}'(\mathbb{R}^d)$, $F = \mathcal{D}'(\Lambda)$

Set $C_P^\infty(X) := \ker P(D) = \{g \in C^\infty(X) \mid P(D)g = 0\}$; if $C_P^\infty(X)$ satisfies (Ω) , the parameter dependence problem w.r.t. F (as in (iii)) has an affirmative solution.

Theorem [6, Vogt-Wagner, 1975-1980]

E be nuclear Fréchet, $T : E \rightarrow E$ be surjective, linear, continuous. TFAE

- (i) $T\varepsilon\text{id}_{\mathcal{S}'(\mathbb{R})} : E\varepsilon\mathcal{S}'(\mathbb{R}) \rightarrow E\varepsilon\mathcal{S}'(\mathbb{R})$ is surjective.
- (ii) $\ker T$ satisfies (Ω) .
- (iii) $T\varepsilon\text{id}_F : E\varepsilon F \rightarrow E\varepsilon F$ is surjective for every LCS $F \cong \prod_{i \in I} F_i$ with F_i a Montel (DF)-space such that its strong dual space $(F_i)'_b$ has (DN).

Examples of F as in (iii): $F = \mathcal{S}'(\mathbb{R}^d)$, $F = \mathcal{D}'(\Lambda)$

Set $C_P^\infty(X) := \ker P(D) = \{g \in C^\infty(X) \mid P(D)g = 0\}$; if $C_P^\infty(X)$ satisfies (Ω) , the parameter dependence problem w.r.t. F (as in (iii)) has an affirmative solution.

Problem 1

Let $P(D) : C^\infty(X) \rightarrow C^\infty(X)$ be surjective. When does $C_P^\infty(X)$ satisfy (Ω) ?
(\Leftrightarrow When is $P(D)\varepsilon\text{id}_{\mathcal{S}'(\mathbb{R})} : C^\infty(X)\varepsilon\mathcal{S}'(\mathbb{R}) \rightarrow C^\infty(X)\varepsilon\mathcal{S}'(\mathbb{R})$ surjective?)

Theorem [6, Vogt-Wagner, 1975-1980]

E be nuclear Fréchet, $T : E \rightarrow E$ be surjective, linear, continuous. TFAE

- (i) $T\varepsilon\text{id}_{\mathcal{S}'(\mathbb{R})} : E\varepsilon\mathcal{S}'(\mathbb{R}) \rightarrow E\varepsilon\mathcal{S}'(\mathbb{R})$ is surjective.
- (ii) $\ker T$ satisfies (Ω) .
- (iii) $T\varepsilon\text{id}_F : E\varepsilon F \rightarrow E\varepsilon F$ is surjective for every LCS $F \cong \prod_{i \in I} F_i$ with F_i a Montel (DF)-space such that its strong dual space $(F_i)'_b$ has (DN).

Examples of F as in (iii): $F = \mathcal{S}'(\mathbb{R}^d)$, $F = \mathcal{D}'(\Lambda)$

Set $C_P^\infty(X) := \ker P(D) = \{g \in C^\infty(X) \mid P(D)g = 0\}$; if $C_P^\infty(X)$ satisfies (Ω) , the parameter dependence problem w.r.t. F (as in (iii)) has an affirmative solution.

Problem 1

Let $P(D) : C^\infty(X) \rightarrow C^\infty(X)$ be surjective. When does $C_P^\infty(X)$ satisfy (Ω) ?
(\Leftrightarrow When is $P(D)\varepsilon\text{id}_{\mathcal{S}'(\mathbb{R})} : C^\infty(X)\varepsilon\mathcal{S}'(\mathbb{R}) \rightarrow C^\infty(X)\varepsilon\mathcal{S}'(\mathbb{R})$ surjective?)

- Petzsche (1980): $C_P^\infty(X)$ has (Ω) for convex X and hypoelliptic $P(D)$.

Theorem [6, Vogt-Wagner, 1975-1980]

E be nuclear Fréchet, $T : E \rightarrow E$ be surjective, linear, continuous. TFAE

- (i) $T\varepsilon\text{id}_{\mathcal{S}'(\mathbb{R})} : E\varepsilon\mathcal{S}'(\mathbb{R}) \rightarrow E\varepsilon\mathcal{S}'(\mathbb{R})$ is surjective.
- (ii) $\ker T$ satisfies (Ω) .
- (iii) $T\varepsilon\text{id}_F : E\varepsilon F \rightarrow E\varepsilon F$ is surjective for every LCS $F \cong \prod_{i \in I} F_i$ with F_i a Montel (DF)-space such that its strong dual space $(F_i)'_b$ has (DN).

Examples of F as in (iii): $F = \mathcal{S}'(\mathbb{R}^d)$, $F = \mathcal{D}'(\Lambda)$

Set $C_P^\infty(X) := \ker P(D) = \{g \in C^\infty(X) \mid P(D)g = 0\}$; if $C_P^\infty(X)$ satisfies (Ω) , the parameter dependence problem w.r.t. F (as in (iii)) has an affirmative solution.

Problem 1

Let $P(D) : C^\infty(X) \rightarrow C^\infty(X)$ be surjective. When does $C_P^\infty(X)$ satisfy (Ω) ?
(\Leftrightarrow When is $P(D)\varepsilon\text{id}_{\mathcal{S}'(\mathbb{R})} : C^\infty(X)\varepsilon\mathcal{S}'(\mathbb{R}) \rightarrow C^\infty(X)\varepsilon\mathcal{S}'(\mathbb{R})$ surjective?)

- Petzsche (1980): $C_P^\infty(X)$ has (Ω) for convex X and hypoelliptic $P(D)$.
- Vogt (1983): $C_P^\infty(X)$ has (Ω) for arbitrary X and elliptic $P(D)$.

Modification of the problem:

Let $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ be surjective. For which LCS F is the operator

$$P(D)\varepsilon \text{id}_F : \mathcal{D}'(X)\varepsilon F \rightarrow \mathcal{D}'(X)\varepsilon F$$

surjective?

Modification of the problem:

Let $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ be surjective. For which LCS F is the operator

$$P(D)\varepsilon \text{id}_F : \mathcal{D}'(X)\varepsilon F \rightarrow \mathcal{D}'(X)\varepsilon F$$

surjective? Initiated by Bonet and Domański in 2006.

Modification of the problem:

Let $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ be surjective. For which LCS F is the operator

$$P(D)\varepsilon \text{id}_F : \mathcal{D}'(X)\varepsilon F \rightarrow \mathcal{D}'(X)\varepsilon F$$

surjective? Initiated by Bonet and Domański in 2006.

A LCS E is called a *PLS-space* if it is the projective limit of a spectrum $(E_n)_{n \in \mathbb{N}}$ of LS-spaces, i.e. $E = \lim_{\leftarrow n \in \mathbb{N}} E_n$, where $E_n = \lim_{\rightarrow N \in \mathbb{N}} E_{n,N}$ are inductive limits of Banach spaces $(E_{n,N})_{N \in \mathbb{N}}$ with compact inclusions $E_{n,N} \hookrightarrow E_{n,N+1}$

Modification of the problem:

Let $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ be surjective. For which LCS F is the operator

$$P(D)\varepsilon \text{id}_F : \mathcal{D}'(X)\varepsilon F \rightarrow \mathcal{D}'(X)\varepsilon F$$

surjective? Initiated by Bonet and Domański in 2006.

A LCS E is called a *PLS-space* if it is the projective limit of a spectrum $(E_n)_{n \in \mathbb{N}}$ of LS-spaces, i.e. $E = \lim_{\leftarrow n \in \mathbb{N}} E_n$, where $E_n = \lim_{\rightarrow N \in \mathbb{N}} E_{n,N}$ are inductive limits of Banach spaces $(E_{n,N})_{N \in \mathbb{N}}$ with compact inclusions $E_{n,N} \hookrightarrow E_{n,N+1}$

Examples: $E = \mathcal{D}'(X)$, $E = \mathcal{A}(X)$; every nuclear Fréchet space is a PLS-space

Modification of the problem:

Let $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ be surjective. For which LCS F is the operator

$$P(D)\varepsilon \text{id}_F : \mathcal{D}'(X)\varepsilon F \rightarrow \mathcal{D}'(X)\varepsilon F$$

surjective? Initiated by Bonet and Domański in 2006.

A LCS E is called a *PLS-space* if it is the projective limit of a spectrum $(E_n)_{n \in \mathbb{N}}$ of LS-spaces, i.e. $E = \lim_{\leftarrow n \in \mathbb{N}} E_n$, where $E_n = \lim_{\rightarrow N \in \mathbb{N}} E_{n,N}$ are inductive limits of Banach spaces $(E_{n,N})_{N \in \mathbb{N}}$ with compact inclusions $E_{n,N} \hookrightarrow E_{n,N+1}$

Examples: $E = \mathcal{D}'(X)$, $E = \mathcal{A}(X)$; every nuclear Fréchet space is a PLS-space

A PLS-space E is said to have $(P\Omega)$ if (with $B_{j,L}$ the closed unit ball in $E_{j,L}$)

$$\forall n \exists m \geq n \forall k \geq m \exists N \forall M \geq N \exists K \geq M \exists C, s > 0 \forall \varepsilon \in (0, 1)$$

$$B_{m,M} \subseteq \varepsilon B_{n,N} + \frac{C}{\varepsilon^s} B_{k,K}$$

Modification of the problem:

Let $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ be surjective. For which LCS F is the operator

$$P(D)\varepsilon \text{id}_F : \mathcal{D}'(X)\varepsilon F \rightarrow \mathcal{D}'(X)\varepsilon F$$

surjective? Initiated by Bonet and Domański in 2006.

A LCS E is called a *PLS-space* if it is the projective limit of a spectrum $(E_n)_{n \in \mathbb{N}}$ of LS-spaces, i.e. $E = \lim_{\leftarrow n \in \mathbb{N}} E_n$, where $E_n = \lim_{\rightarrow N \in \mathbb{N}} E_{n,N}$ are inductive limits of Banach spaces $(E_{n,N})_{N \in \mathbb{N}}$ with compact inclusions $E_{n,N} \hookrightarrow E_{n,N+1}$

Examples: $E = \mathcal{D}'(X)$, $E = \mathcal{A}(X)$; every nuclear Fréchet space is a PLS-space

A PLS-space E is said to have $(P\Omega)$ if (with $B_{j,L}$ the closed unit ball in $E_{j,L}$)

$$\forall n \exists m \geq n \forall k \geq m \exists N \forall M \geq N \exists K \geq M \exists C, s > 0 \forall \varepsilon \in (0, 1)$$

$$B_{m,M} \subseteq \varepsilon B_{n,N} + \frac{C}{\varepsilon^s} B_{k,K}$$

- independent of particular representation of E as PLS-space
- linear topological invariant, inherited by quotients but not by closed subspace...
- examples: $E = \mathcal{D}'(X)$, $E = \mathcal{A}(X)$;

Modification of the problem:

Let $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ be surjective. For which LCS F is the operator

$$P(D)\varepsilon \text{id}_F : \mathcal{D}'(X)\varepsilon F \rightarrow \mathcal{D}'(X)\varepsilon F$$

surjective? Initiated by Bonet and Domański in 2006.

A LCS E is called a *PLS-space* if it is the projective limit of a spectrum $(E_n)_{n \in \mathbb{N}}$ of LS-spaces, i.e. $E = \lim_{\leftarrow n \in \mathbb{N}} E_n$, where $E_n = \lim_{\rightarrow N \in \mathbb{N}} E_{n,N}$ are inductive limits of Banach spaces $(E_{n,N})_{N \in \mathbb{N}}$ with compact inclusions $E_{n,N} \hookrightarrow E_{n,N+1}$

Examples: $E = \mathcal{D}'(X)$, $E = \mathcal{A}(X)$; every nuclear Fréchet space is a PLS-space

A PLS-space E is said to have $(P\Omega)$ if (with $B_{j,L}$ the closed unit ball in $E_{j,L}$)

$$\forall n \exists m \geq n \forall k \geq m \exists N \forall M \geq N \exists K \geq M \exists C, s > 0 \forall \varepsilon \in (0, 1)$$

$$B_{m,M} \subseteq \varepsilon B_{n,N} + \frac{C}{\varepsilon^s} B_{k,K}$$

- independent of particular representation of E as PLS-space
- linear topological invariant, inherited by quotients but not by closed subspace...
- examples: $E = \mathcal{D}'(X)$, $E = \mathcal{A}(X)$; nuclear Fréchet space satisfies (Ω) iff it satisfies $(P\Omega)$

Theorem [1, Bonet, Domański, 2006]

E be a PLS-space, $T : E \rightarrow E$ be surjective, linear, continuous. TFAE

- (i) $T\varepsilon\text{id}_{\mathcal{D}'(\mathbb{R})} : E\varepsilon\mathcal{D}'(\mathbb{R}) \rightarrow E\varepsilon\mathcal{D}'(\mathbb{R})$ is surjective.
- (ii) $\ker T$ satisfies $(P\Omega)$.
- (iii) $T\varepsilon\text{id}_F : E\varepsilon F \rightarrow E\varepsilon F$ is surjective for every LCS $F \cong \prod_{i \in I} F_i$ with F_i a nuclear (DF)-space such that its strong dual space $(F_i)'_b$ satisfies (DN) .

Examples for F as in (iii): $F = \mathcal{S}'(\mathbb{R}^d)$, $F = \mathcal{D}'(\Lambda)$

Theorem [1, Bonet, Domański, 2006]

E be a PLS-space, $T : E \rightarrow E$ be surjective, linear, continuous. TFAE

- (i) $T\varepsilon\text{id}_{\mathcal{D}'(\mathbb{R})} : E\varepsilon\mathcal{D}'(\mathbb{R}) \rightarrow E\varepsilon\mathcal{D}'(\mathbb{R})$ is surjective.
- (ii) $\ker T$ satisfies $(P\Omega)$.
- (iii) $T\varepsilon\text{id}_F : E\varepsilon F \rightarrow E\varepsilon F$ is surjective for every LCS $F \cong \prod_{i \in I} F_i$ with F_i a nuclear (DF)-space such that its strong dual space $(F_i)'_b$ satisfies (DN) .

Examples for F as in (iii): $F = \mathcal{S}'(\mathbb{R}^d)$, $F = \mathcal{D}'(\Lambda)$

Set $\mathcal{D}'_P(X) := \ker P(D) = \{u \in \mathcal{D}'(X) \mid P(D)u = 0\}$;

Theorem [1, Bonet, Domański, 2006]

E be a PLS-space, $T : E \rightarrow E$ be surjective, linear, continuous. TFAE

- (i) $T\varepsilon\text{id}_{\mathcal{D}'(\mathbb{R})} : E\varepsilon\mathcal{D}'(\mathbb{R}) \rightarrow E\varepsilon\mathcal{D}'(\mathbb{R})$ is surjective.
- (ii) $\ker T$ satisfies $(P\Omega)$.
- (iii) $T\varepsilon\text{id}_F : E\varepsilon F \rightarrow E\varepsilon F$ is surjective for every LCS $F \cong \prod_{i \in I} F_i$ with F_i a nuclear (DF)-space such that its strong dual space $(F_i)'_b$ satisfies (DN) .

Examples for F as in (iii): $F = \mathcal{S}'(\mathbb{R}^d)$, $F = \mathcal{D}'(\Lambda)$

Set $\mathcal{D}'_P(X) := \ker P(D) = \{u \in \mathcal{D}'(X) \mid P(D)u = 0\}$; if $\mathcal{D}'_P(X)$ satisfies $(P\Omega)$, the parameter dependence problem w.r.t. F (as in (iii)) has an affirmative solution in distributional setting.

Theorem [1, Bonet, Domański, 2006]

E be a PLS-space, $T : E \rightarrow E$ be surjective, linear, continuous. TFAE

- (i) $T\varepsilon\text{id}_{\mathcal{D}'(\mathbb{R})} : E\varepsilon\mathcal{D}'(\mathbb{R}) \rightarrow E\varepsilon\mathcal{D}'(\mathbb{R})$ is surjective.
- (ii) $\ker T$ satisfies $(P\Omega)$.
- (iii) $T\varepsilon\text{id}_F : E\varepsilon F \rightarrow E\varepsilon F$ is surjective for every LCS $F \cong \prod_{i \in I} F_i$ with F_i a nuclear (DF)-space such that its strong dual space $(F_i)'_b$ satisfies (DN) .

Examples for F as in (iii): $F = \mathcal{S}'(\mathbb{R}^d)$, $F = \mathcal{D}'(\Lambda)$

Set $\mathcal{D}'_P(X) := \ker P(D) = \{u \in \mathcal{D}'(X) \mid P(D)u = 0\}$; if $\mathcal{D}'_P(X)$ satisfies $(P\Omega)$, the parameter dependence problem w.r.t. F (as in (iii)) has an affirmative solution in distributional setting.

Problem 2

Let $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ be surjective. When does $\mathcal{D}'_P(X)$ satisfy $(P\Omega)$?
(\Leftrightarrow When is $P(D)\varepsilon\text{id}_{\mathcal{D}'(\mathbb{R})} : \mathcal{D}'(X)\varepsilon\mathcal{D}'(\mathbb{R}) \rightarrow \mathcal{D}'(X)\varepsilon\mathcal{D}'(\mathbb{R})$ surjective?)

Theorem [1, Bonet, Domański, 2006]

E be a PLS-space, $T : E \rightarrow E$ be surjective, linear, continuous. TFAE

- (i) $T\varepsilon\text{id}_{\mathcal{D}'(\mathbb{R})} : E\varepsilon\mathcal{D}'(\mathbb{R}) \rightarrow E\varepsilon\mathcal{D}'(\mathbb{R})$ is surjective.
- (ii) $\ker T$ satisfies $(P\Omega)$.
- (iii) $T\varepsilon\text{id}_F : E\varepsilon F \rightarrow E\varepsilon F$ is surjective for every LCS $F \cong \prod_{i \in I} F_i$ with F_i a nuclear (DF)-space such that its strong dual space $(F_i)'_b$ satisfies (DN) .

Examples for F as in (iii): $F = \mathcal{S}'(\mathbb{R}^d)$, $F = \mathcal{D}'(\Lambda)$

Set $\mathcal{D}'_P(X) := \ker P(D) = \{u \in \mathcal{D}'(X) \mid P(D)u = 0\}$; if $\mathcal{D}'_P(X)$ satisfies $(P\Omega)$, the parameter dependence problem w.r.t. F (as in (iii)) has an affirmative solution in distributional setting.

Problem 2

Let $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ be surjective. When does $\mathcal{D}'_P(X)$ satisfy $(P\Omega)$?
(\Leftrightarrow When is $P(D)\varepsilon\text{id}_{\mathcal{D}'(\mathbb{R})} : \mathcal{D}'(X)\varepsilon\mathcal{D}'(\mathbb{R}) \rightarrow \mathcal{D}'(X)\varepsilon\mathcal{D}'(\mathbb{R})$ surjective?)

Schwartz kernel theorem: $\mathcal{D}'(X)\varepsilon\mathcal{D}'(\mathbb{R}) \cong \mathcal{D}'(X \times \mathbb{R})$, and $P(D)\varepsilon\text{id}_{\mathcal{D}'(\mathbb{R})}$ is $P^+(D) : \mathcal{D}'(X \times \mathbb{R}) \rightarrow \mathcal{D}'(X \times \mathbb{R})$, with $P^+(\xi_1, \dots, \xi_d, \xi_{d+1}) = P(\xi_1, \dots, \xi_d)$

Theorem [1, Bonet, Domański, 2006]

E be a PLS-space, $T : E \rightarrow E$ be surjective, linear, continuous. TFAE

- (i) $T\varepsilon\text{id}_{\mathcal{D}'(\mathbb{R})} : E\varepsilon\mathcal{D}'(\mathbb{R}) \rightarrow E\varepsilon\mathcal{D}'(\mathbb{R})$ is surjective.
- (ii) $\ker T$ satisfies $(P\Omega)$.
- (iii) $T\varepsilon\text{id}_F : E\varepsilon F \rightarrow E\varepsilon F$ is surjective for every LCS $F \cong \prod_{i \in I} F_i$ with F_i a nuclear (DF)-space such that its strong dual space $(F_i)'_b$ satisfies (DN) .

Examples for F as in (iii): $F = \mathcal{S}'(\mathbb{R}^d)$, $F = \mathcal{D}'(\Lambda)$

Set $\mathcal{D}'_P(X) := \ker P(D) = \{u \in \mathcal{D}'(X) \mid P(D)u = 0\}$; if $\mathcal{D}'_P(X)$ satisfies $(P\Omega)$, the parameter dependence problem w.r.t. F (as in (iii)) has an affirmative solution in distributional setting.

Problem 2

Let $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ be surjective. When does $\mathcal{D}'_P(X)$ satisfy $(P\Omega)$?
(\Leftrightarrow When is $P(D)\varepsilon\text{id}_{\mathcal{D}'(\mathbb{R})} : \mathcal{D}'(X)\varepsilon\mathcal{D}'(\mathbb{R}) \rightarrow \mathcal{D}'(X)\varepsilon\mathcal{D}'(\mathbb{R})$ surjective?)

Schwartz kernel theorem: $\mathcal{D}'(X)\varepsilon\mathcal{D}'(\mathbb{R}) \cong \mathcal{D}'(X \times \mathbb{R})$, and $P(D)\varepsilon\text{id}_{\mathcal{D}'(\mathbb{R})}$ is $P^+(D) : \mathcal{D}'(X \times \mathbb{R}) \rightarrow \mathcal{D}'(X \times \mathbb{R})$, with $P^+(\xi_1, \dots, \xi_d, \xi_{d+1}) = P(\xi_1, \dots, \xi_d)$; gives equivalent formulation of Problem 2:

$P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ surjective $\stackrel{?}{\Rightarrow} P^+(D) : \mathcal{D}'(X \times \mathbb{R}) \rightarrow \mathcal{D}'(X \times \mathbb{R})$ surjective?

Malgrange: for hypoelliptic $P(D)$ it holds $C_P^\infty(X) = \mathcal{D}'_P(X)$ as LCS and
 $P(D) : C^\infty(X) \rightarrow C^\infty(X)$ surjective iff $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ surjective

Malgrange: for hypoelliptic $P(D)$ it holds $C_P^\infty(X) = \mathcal{D}'_P(X)$ as LCS and $P(D) : C^\infty(X) \rightarrow C^\infty(X)$ surjective iff $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ surjective

Theorem [3, 4, 5, K. 2012, 2019]

(a) For $d \geq 3$ there is a hypoelliptic $P(D)$ and a (non-convex) set X such that $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ is surjective and $\mathcal{D}'_P(X)$ does not satisfy $(P\Omega)$; so, $P(D) : C^\infty(X) \rightarrow C^\infty(X)$ is surjective and $C_P^\infty(X)$ does not have (Ω) .

Malgrange: for hypoelliptic $P(D)$ it holds $C_P^\infty(X) = \mathcal{D}'_P(X)$ as LCS and $P(D) : C^\infty(X) \rightarrow C^\infty(X)$ surjective iff $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ surjective

Theorem [3, 4, 5, K. 2012, 2019]

- (a) For $d \geq 3$ there is a hypoelliptic $P(D)$ and a (non-convex) set X such that $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ is surjective and $\mathcal{D}'_P(X)$ does not satisfy $(P\Omega)$; so, $P(D) : C^\infty(X) \rightarrow C^\infty(X)$ is surjective and $C_P^\infty(X)$ does not have (Ω) .
- (b) Let $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ be surjective. Then, $\mathcal{D}'_P(X)$ satisfies $(P\Omega)$ if
 - (b-i) $P(\xi_1, \dots, \xi_d) = Q(\xi_1, \dots, \xi_k)$ with $1 \leq k \leq d$ and Q elliptic.
 - (b-ii) $P(D)$ is semi-elliptic with a single characteristic direction, e.g. a parabolic operator.
 - (b-iii) $P(D)$ factorizes into first order operators.
 - (b-iv) $d = 2$

Malgrange: for hypoelliptic $P(D)$ it holds $C_P^\infty(X) = \mathcal{D}'_P(X)$ as LCS and $P(D) : C^\infty(X) \rightarrow C^\infty(X)$ surjective iff $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ surjective

Theorem [3, 4, 5, K. 2012, 2019]

- (a) For $d \geq 3$ there is a hypoelliptic $P(D)$ and a (non-convex) set X such that $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ is surjective and $\mathcal{D}'_P(X)$ does not satisfy $(P\Omega)$; so, $P(D) : C^\infty(X) \rightarrow C^\infty(X)$ is surjective and $C_P^\infty(X)$ does not have (Ω) .
- (b) Let $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ be surjective. Then, $\mathcal{D}'_P(X)$ satisfies $(P\Omega)$ if
 - (b-i) $P(\xi_1, \dots, \xi_d) = Q(\xi_1, \dots, \xi_k)$ with $1 \leq k \leq d$ and Q elliptic.
 - (b-ii) $P(D)$ is semi-elliptic with a single characteristic direction, e.g. a parabolic operator.
 - (b-iii) $P(D)$ factorizes into first order operators.
 - (b-iv) $d = 2$

For all operators in (b), surjectivity of $P(D)$ on $\mathcal{D}'(X)$ is equivalent to surjectivity on $C^\infty(X)$!

Theorem [2, Debrouwere, K. 2023]

(a) Let $P(D) : C^\infty(X) \rightarrow C^\infty(X)$ be surjective. If $\mathcal{D}'_P(X)$ has $(P\Omega)$, then $C_P^\infty(X)$ has (Ω) .

Theorem [2, Debrouwere, K. 2023]

- (a) Let $P(D) : C^\infty(X) \rightarrow C^\infty(X)$ be surjective. If $\mathcal{D}'_P(X)$ has $(P\Omega)$, then $C_P^\infty(X)$ has (Ω) .
- (b) Let $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ be surjective. If $C_P^\infty(X)$ has (Ω) , then $\mathcal{D}'_P(X)$ has $(P\Omega)$.

Theorem [2, Debrouwere, K. 2023]

- (a) Let $P(D) : C^\infty(X) \rightarrow C^\infty(X)$ be surjective. If $\mathcal{D}'_P(X)$ has $(P\Omega)$, then $C_P^\infty(X)$ has (Ω) .
- (b) Let $P(D) : \mathcal{D}'(X) \rightarrow \mathcal{D}'(X)$ be surjective. If $C_P^\infty(X)$ has (Ω) , then $\mathcal{D}'_P(X)$ has $(P\Omega)$.

Corollary [2, Debrouwere, K. 2023]

Let $P(D) : C^\infty(X) \rightarrow C^\infty(X)$ be surjective. Then, $C_P^\infty(X)$ satisfies (Ω) if

- (i) X is convex.
- (ii) $P(\xi_1, \dots, \xi_d) = Q(\xi_1, \dots, \xi_k)$ with $1 \leq k \leq d$ and Q elliptic.
- (iii) $P(D)$ factorizes into first order operators.
- (iv) $d = 2$

References

- [1] J. Bonet, P. Domański, *Parameter dependence of solutions of differential equations on spaces of distributions and the splitting of short exact sequences*, J. Funct. Anal. 230:329–381, 2006.
- [2] A. Debrouwere, T. Kalmes, *Linear topological invariants for kernels of convolution and differential operators*, J. Funct. Anal. 284(10); article 109886, 20 pp. , 2023
- [3] T. Kalmes, *The augmented operator of a surjective partial differential operator with constant coefficients need not be surjective*, Bull. Lond. Math. Soc. 44:610–614, 2012.
- [4] T. Kalmes, *Some results on the surjectivity of augmented differential operators*, J. Math. Anal. Appl. 386:125–134, 2012.
- [5] T. Kalmes, *Surjectivity of differential operators and linear topological invariants for spaces of zero solutions*, Rev. Mat. Complut. 32:37–55, 2019.
- [6] D. Vogt, M.J. Wagner, *Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau*, Studia Math. 67(3):225–240, 1980.

Thank you for your attention!

HAPPY BIRTHDAY, PEPE!!!