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Motivation

The classical theory

A formal power series û(t) =
∑

p≥0 apt
p ∈ C[[t]] is said to be k-summable along

direction d ∈ R if its Borel transformation of order 1/k,

B(Γ(1+p/k))p≥0

∑
p≥0

apt
p

 =
∑
p≥0

ap

Γ
(
1 + p

k

) tp
defines an analytic function on some neighborhood of the origin, which can be
analytically extended to a function ud defined on an infinite sector of bisecting
direction d , say Sd , with exponential growth of order k at infinity in that sector,
i.e. for every S̃d ≺ Sd there exist A,B > 0 such that

|ud(t)| ≤ AeB|t|
k

, t ∈ S̃d .

A Laplace transform can be applied to ud along direction d .
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Motivation

The classical theory

This procedure is related to the problem of finding analytic solutions to functional
equations from formal ones.

Formal solution: û(t) =
∑

p≥0 apt
p ∈ C[[t]]

Summability process: Borel-Laplace procedure

Analytic solution: ud(t)
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Motivation

Nevanlinna’s Theorem: The following
statements are equivalent:

A formal power series
û(t) =

∑
p≥0 upt

p is k-summable
along direction d ∈ R
There exists a unique holomorphic
function u defined on a sectorial
region G with bisecting direction d
and opening π/k which admits û as
its Gevrey asymptotic expansion of
order 1/k in that sectorial region,
i.e. for all S̃d ≺ G there exist
C ,A > 0 s.t.∣∣∣∣∣u(t)−

N∑
p=0

upt
p

∣∣∣∣∣ ≤ CANΓ(1+N/k)|t|N+1,

for all N ≥ 0 and t ∈ S̃d .



Motivation

In [1], K. Ichinobe and S. Michalik defined the notion of sequences preserving
summability.

[1] K. Ichinobe, S. Michalik, On the summability and convergence of formal solutions of linear

q-difference-differential equations with constant coefficients, Math. Ann. 389, No. 2, 1099-1130 (2024).

A sequence m = (mp)p≥0 of positive real numbers, with m0 = 1, preserves
summability if for every k > 0, d ∈ R and every formal power series û ∈ C[[t]] the
following statements are equivalent:

û is k-summable along direction d .

Bmû is k-summable along direction d .

Main motivation

A formal solution of a problem (also the problem itself) can be substituted by
some other, which might be more easy to handle, to check summability of the
formal solution.
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Previous results

The set of sequences preserving summability forms a group with the operation

(m1,p)p≥0 · (m2,p)p≥0 = (m1,pm2,p)p≥0.

Some examples:

The sequence (1)p≥0 preserves summability,

for every A > 0, the sequence (Ap)p≥0 preserves summability,

Given two sequences of moments associated to kernel functions for
generalized summability, of the same positive order, then its quotient
sequence preserves summability.
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Previous results

Let 0 < q < 1. We consider the sequence of q−factorials mq = ([p]q!)p≥0 defined
by [0]q! = 1 and for all p ≥ 1, [p]q! = [p]q · [p − 1]q · · · [1]q, with

[j ]q = 1 + q + · · ·+ qj−1 =
1− qj

1− q
, j ≥ 1.

The q−difference operator is given by

∂q,t(û) =
û(qt)− û(t)

qt − t
,

for every û ∈ C[[t]], if q ∈ [0, 1).

We observe that

∂0,t(û) =
1

t
(û(t)− û(0)).

The main result in [1] reads as follows:

Theorem

The sequence ([p]q!)p≥0 preserves summability for every q ∈ [0, 1).
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for every û ∈ C[[t]], if q ∈ [0, 1). We observe that

∂0,t(û) =
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Previous results

As an application, the summability of formal solutions to functional equations is
characterized in terms of certain simplified equations.

P(λ, ζ) ∈ C[λ, ζ]
q ∈ [0, 1)


P(∂q,t , ∂z)u = 0

∂jq,tu(0, z) = ϕj(z) ∈ O(D),
j = 0, . . . , p − 1,


P(∂0,t , ∂z)v = 0

∂j0,tv(0, z) = ϕj(z) ∈ O(D),
j = 0, . . . , p − 1,

û(t, z) in the form
∑

p≥0
up(z)
[p]q! t

p

in O(D)[[t]] is a formal solution. ⇔
v̂(t, z) in the form

∑
p≥0 up(z)tp

in O(D)[[t]] is a formal solution.
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Previous results

Levels of approximation
As an application, the summability of formal solutions to functional equations is
characterized in terms of certain simplified equations.
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û(t, z) is a formal solution of
Gevrey order 1/k > 0. ⇔

v̂(t, z) is a formal solution of
Gevrey order 1/k > 0.
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Previous results

Different theories involving q−Gevrey asymptotic expansions have been developed
in the last decades.

Roughly speaking, one considers q−analogs of Borel and Laplace transform for a
“summability” process.

The study deals with:

Preservation of q−Gevrey order

Preservation of q−Gevrey asymptotic expansions
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Sequences preserving q−Gevrey asymptotic expansions

Let q > 1. Let S be a sector with vertex at the origin. We say that f ∈ O(S ,E)
admits f̂ (t) =

∑
p≥0 fpt

p ∈ E[[t]] as its q−Gevrey asymptotic expansion of order

s > 0 (at the origin) if for every S̃ ≺ S there exist C ,A > 0 such that∥∥∥∥∥f (t)−
N∑

p=0

fpt
p

∥∥∥∥∥
E

≤ CANqs
N(N+1)

2 |z |N+1,

for all N ≥ 0 and all z ∈ S̃ .

One of the q−analogs which provide an analytic meaning to a formal power series
is the following, initially developped for s = 1 in [2].

[2] C. Zhang, Transformations de q−Borel−Laplace au moyen de la fonction thêta de Jacobi, C. R. Acad. Sci.

Paris, Sér. I, Math. 331, No. 1 (2000), 31–34.
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Sequences preserving q−Gevrey asymptotic expansions

Let f̂ ∈ E[[t]] such that g = Bq;s(f̂ ) ∈ E{t} for some s > 0, where

Bq;s

∑
p≥0

apt
p

 =
∑
p≥0

ap

qs
p(p−1)

2

tp.

Moreover, assume that g can be analytically extended to an infinite sector Sd of
bisecting direction d ∈ R and the extension is of q−exponential growth of order
1/s, i.e. there exist C , h > 0 and α ∈ R such that

‖f (z)‖E ≤ C exp

(
log2(|z |+ h)

2s log(q)

)
(|z |+ h)α, z ∈ Sd .

Then, for every γ ∈ R such that Lγ = (0,∞)e iγ ⊆ Sd the function

Lγq;s(g)(t) =
1

πqs

∫
Lγ

f (u)

Θqs

(
u
t

) du
u
, where Θqs (z) =

∑
p∈Z

1

qs
p(p−1)

2

zp,

admits f̂ as its q−Gevrey asymptotic expansion of order s on some finite sector of
bisecting direction d and opening > 2π.
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Sequences preserving q−Gevrey asymptotic expansions

As a q−analog of sequences preserving summability, we defined in [3]:

A sequence m is said to preserve q−Gevrey asymptotic expansions if for every
s > 0, d ∈ R and û ∈ E[[t]] the following statements turn out to be equivalent:

(i) Bq;s(û) ∈ E{t}, and this function can be extended on an infinite sector of
bisecting direction d with q−exponential growth of order 1/s on such sector.

(ii) Bq;sBm(û) ∈ E{t}, and this function can be extended on an infinite sector of
bisecting direction d with q−exponential growth of order 1/s on such sector.

[3] A. L., S. Michalik, On sequences preserving q−Gevrey asymptotic expansions, Anal. Math. Phys. 14, No.

2, Paper No. 17, 25 p. (2024).

Remark: Observe the absence of unicity on the assignment.
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Main results

A more easy to handle characterization for a sequence to preserve q−Gevrey
asymptotic expansions is available.

Theorem

A sequence m = (mp)p≥0 preserves q−Gevrey asymptotic expansions if and only if
for every s > 0 and every θ 6= 0 mod 2π,∑

p≥0

1

mp
tp and

∑
p≥0

mpt
p

belong to C{t} and each of them can be extended to an infinite sector of
bisecting direction θ with q−exponential growth of order 1/s.



Main results

Examples:

The sequence (Ap)p≥0 preserves q−Gevrey asymptotic expansions.

The sequence
(

(2p)!
p!2

)
p≥0

preserves q−Gevrey asymptotic expansions.

Theorem

The sequence ([p]1/q!)p≥0 preserves q−Gevrey asymptotic expansions.

Proof based on the previous characterization.
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Open problems

1 Search for sequences which preserve summability but not q−Gevrey
asymptotic expansions, if it exists.

2 A sequence preserving q−Gevrey asymptotic expansions seems to be useful
when searching for a simplification of families of q−differencial equations.
Further applications?
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Further recent results

In [4], the authors give answer to the previous conjecture, among other related
questions.

[4] S. Michalik, M. Suwińska, B. Tkacz, On sequences preserving summability, Result. Math. 80, No. 4, Paper

No. 114, 30 p. (2025).

Theorem [4, Theorem 7]

The set of sequences preserving q−Gevrey asymptotic expansions is strictly
contained in the set of sequences preserving summability.
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Further recent results

In [4], the authors describe topological results on the property of preserving
summability, and on the property of preserving q-Gevrey asymptotic expansions.

Let m̃ = (m̃p)p≥0 preserving summability. If m = (mp)p≥0 is such that m0 = 1
and for all s > 0 there exist A(s),B(s) > 0 with

|mp − m̃p| ≤
1

(p!)s
A(s)B(s)p, p ≥ 0,

then, m preserves summability.
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Further recent results

From the previous results, the authors prove that the sequence m = (mp)p≥0, with

mp = 1 + pq−
p(p−1)

2 , p ≥ 0

preserves summability but does not preserve q-Gevrey asymptotic expansions.



Thank you for your attention!
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