

Dynamics of translation semigroups on directed metric trees

Elisabetta Mangino (joint work with Álvaro Vargas-Moreno)

International Workshop on Functional Analysis
on the Occasion of the 70th Birthday of José Bonet

Valencia, 17.06.2025

X separable infinite-dimensional Banach space

Discrete dynamics

$T : X \rightarrow X$ bounded linear operator

T hypercyclic $\Leftrightarrow \exists x \in X$ s.t.

$\overline{\{T^n x : n \in \mathbb{N}\}} = X$,

Continuous dynamics

$(T_t)_{t \geq 0}$ C_0 -semigroup on X

$(T_t)_{t \geq 0}$ hypercyclic $\Leftrightarrow \exists x \in X$ s.t.

$\overline{\{T_t x : t \geq 0\}} = X$.

- Conejero-Muller-Peris 2007:

$(T_t)_{t \geq 0}$ is hypercyclic if and only if every operator T_t is hypercyclic.

- Bayart-Bermudez 2009:

Example of chaotic semigroup such that every T_t is not chaotic

X separable infinite-dimensional Banach space

Discrete dynamics

$T : X \rightarrow X$ bounded linear operator

T hypercyclic $\Leftrightarrow \exists x \in X$ s.t.

$\overline{\{T^n x : n \in \mathbb{N}\}} = X$,

Continuous dynamics

$(T_t)_{t \geq 0}$ C_0 -semigroup on X

$(T_t)_{t \geq 0}$ hypercyclic $\Leftrightarrow \exists x \in X$ s.t.

$\overline{\{T_t x : t \geq 0\}} = X$.

- Conejero-Muller-Peris 2007:

$(T_t)_{t \geq 0}$ is hypercyclic if and only if every operator T_t is hypercyclic.

- Bayart-Bermudez 2009:

Example of chaotic semigroup such that every T_t is not chaotic

X separable infinite-dimensional Banach space

Discrete dynamics

$T : X \rightarrow X$ bounded linear operator

T hypercyclic $\Leftrightarrow \exists x \in X$ s.t.

$\overline{\{T^n x : n \in \mathbb{N}\}} = X$,

Continuous dynamics

$(T_t)_{t \geq 0}$ C_0 -semigroup on X

$(T_t)_{t \geq 0}$ hypercyclic $\Leftrightarrow \exists x \in X$ s.t.

$\overline{\{T_t x : t \geq 0\}} = X$.

- Conejero-Muller-Peris 2007:

$(T_t)_{t \geq 0}$ is hypercyclic if and only if every operator T_t is hypercyclic.

- Bayart-Bermudez 2009:

Example of chaotic semigroup such that every T_t is not chaotic

Backward Shifts

$(v_n)_{n \in \mathbb{N}}, v_n > 0, 1 \leq p < \infty.$

$$\ell_p(v) = \{(x_n)_{n \in \mathbb{N}} \mid \sum_{n \in \mathbb{N}} |x_n|^p v_n < \infty\}$$

$$B : \ell_p(v) \rightarrow \ell_p(v)$$

$$B((x_n)_{n \in \mathbb{N}}) = (x_{n+1})_{n \in \mathbb{N}}$$

B is continuous if and only if

$$\sup_{n \in \mathbb{N}} \frac{v_n}{v_{n+1}} < \infty$$

$B : \ell_p(v) \rightarrow \ell_p(v)$ hypercyclic \Leftrightarrow

$$\inf_{n \in \mathbb{N}} v_n = 0$$

Translation semigroups:

$\rho : [0, +\infty[\rightarrow (0, +\infty)$ locally integrable function, $1 \leq p < \infty$

$$L_p^\rho = L_p([0, +\infty[, \rho dx)$$

$$T_t f(\cdot) = f(\cdot + t), \quad t \geq 0, f \in L_p^\rho$$

$\mathcal{T} = (T_t)_{t \geq 0}$ is a strongly continuous semi-group on L_p^ρ , called **translation semigroup**, if and only if there exist $M \geq 1, \omega \in \mathbb{R}$ s.t.

$$\rho(\tau) \leq M e^{\omega \tau} \rho(\tau + t), \quad (\tau, t > 0)$$

In this case ρ is called an admissible weight.
 \mathcal{T} hypercyclic on $L_p^\rho \Leftrightarrow \liminf_{x \rightarrow \infty} \rho(x) = 0$.

Backward Shifts

$(v_n)_{n \in \mathbb{N}}, v_n > 0, 1 \leq p < \infty.$

$$\ell_p(v) = \{(x_n)_{n \in \mathbb{N}} \mid \sum_{n \in \mathbb{N}} |x_n|^p v_n < \infty\}$$

$$B : \ell_p(v) \rightarrow \ell_p(v)$$

$$B((x_n)_{n \in \mathbb{N}}) = (x_{n+1})_{n \in \mathbb{N}}$$

B is continuous if and only if

$$\sup_{n \in \mathbb{N}} \frac{v_n}{v_{n+1}} < \infty$$

$B : \ell_p(v) \rightarrow \ell_p(v)$ hypercyclic \Leftrightarrow

$$\inf_{n \in \mathbb{N}} v_n = 0$$

Translation semigroups:

$\rho : [0, +\infty[\rightarrow (0, +\infty)$ locally integrable function, $1 \leq p < \infty$

$$L_p^\rho = L_p([0, +\infty[, \rho dx)$$

$$T_t f(\cdot) = f(\cdot + t), \quad t \geq 0, \quad f \in L_p^\rho$$

$\mathcal{T} = (T_t)_{t \geq 0}$ is a strongly continuous semi-group on L_p^ρ , called **translation semigroup**, if and only if there exist $M \geq 1, \omega \in \mathbb{R}$ s.t.

$$\rho(\tau) \leq M e^{\omega \tau} \rho(\tau + t), \quad (\tau, t > 0)$$

In this case ρ is called an admissible weight.
 \mathcal{T} hypercyclic on $L_p^\rho \Leftrightarrow \liminf_{x \rightarrow \infty} \rho(x) = 0$.

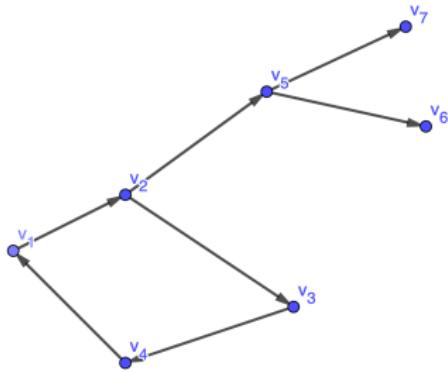
Directed trees

Martínez-Avendaño, Grosse-Erdmann, Papathanasiou, Lopez-Martínez

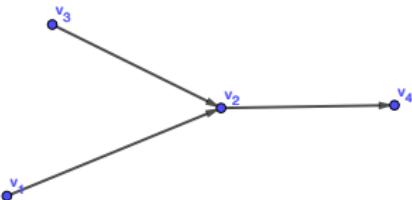
Let $G = (V, E)$ be a locally finite *directed tree* without cycles:

- V countable set of vertices
- $E \subset V \times V \setminus \{(v, v) \mid v \in V\}$ edges
- it can't happen that there exist $v_1, \dots, v_k \in V$ such that $(v_1, v_2), (v_2, v_3), \dots, (v_{k-1}, v_k), (v_k, v_1) \in E$
- for each vertex v there is at most another vertex $w \in V$ such that w is the parent of v and v is the child of w , namely $(w, v) \in E$.
- given an edge $e = (v, w)$, v is said to be the tail of e and w the head of e
- every vertex has only a finite number of children. A vertex without children is called a *leaf*.
- A directed tree has at most one vertex without a parent, called the root of the tree and denoted *root*. The parent of a vertex $v \neq \text{root}$ is denoted by $\text{par}(v)$.

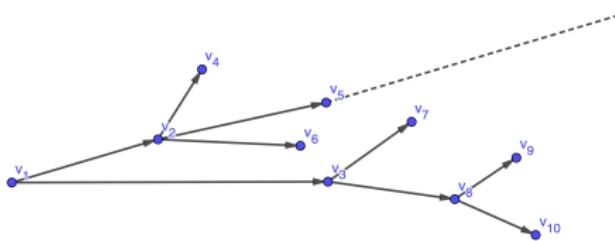
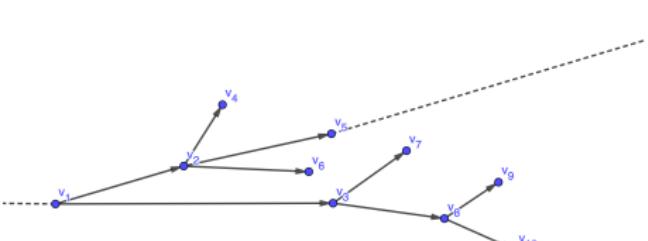
$$\text{Chi}(v) = \{u \in V \mid (v, u) \in E\} \quad \text{Chi}^n(v) = \bigcup_{u \in \text{Chi}^{n-1}(v)} \text{Chi}(u)$$



NO



NO



$$\text{par}(v_5) = v_2$$

$$\text{Chi}(v_2) = \{v_3, v_4, v_5\}$$

v_1 is the tail of the edge (v_1, v_2) , v_2 is the head of the edge (v_1, v_2) .

$$\text{Chi}^3(v_1) = \{v_9, v_{10}\}$$

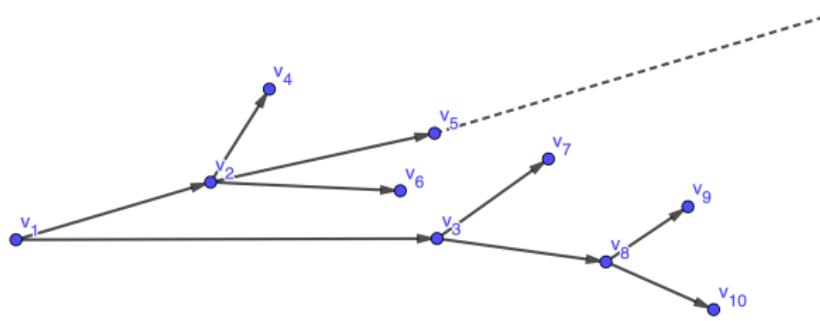
The backward shift on a tree

Let $\mu \in \mathbb{K}^V$ be a family of non-zero numbers, $1 \leq p < \infty$.

$$\ell^p(V, \mu) = \{f \in \mathbb{K}^V \mid \sum_{v \in V} |f(v)\mu_v|^p < \infty\}$$

$$(Bf)(v) = \sum_{u \in Chi(v)} f(u), \quad v \in V$$

Example.



$$Bf(v_2) = f(v_4) + f(v_5) + f(v_6), \quad Bf(v_1) = f(v_2) + f(v_3), \quad (Bf)(v_4) = 0$$

Boundedness and hypercyclicity of the backward shift on directed trees

K.-G. Grosse Erdmann, D. Papathanasiou

- B is bounded on $\ell^1(V, \mu) \Leftrightarrow \sup_{v \in V \setminus \text{root}} \left| \frac{\mu_{\text{par}(v)}}{\mu_v} \right| < \infty$.
- If $1 < p < \infty$:
 B is bounded on $\ell^p(V, \mu) \Leftrightarrow \sup_{v \in V} |\mu_v|^{p^*} \sum_{u \in \text{Chi}(v)} |\mu_u|^{-p^*} < \infty$.

If the tree is rooted and without leaves:

B is hypercyclic in $\ell^p(V, \mu)$ if and only if there is an increasing sequence $(n_k)_k$ of positive integers such that for every $v \in V$

$$\lim_{k \rightarrow \infty} \inf_{u \in \text{Chi}^{n_k}(v)} |\mu_u| = 0 \quad p = 1$$

$$\lim_{k \rightarrow \infty} \sum_{u \in \text{Chi}^{n_k}(v)} |\mu_u|^{-p^*} = \infty \quad 1 < p < \infty$$

Evolution Equations on networks

- Heat/Diffusion: How heat or a substance diffuses through a network of pipes or wires.
- Wave Propagation: How signals (e.g., in a communication network, or pressure waves in a system of pipes) propagate and interact at junctions.
- Transport Processes: Modeling flows (e.g., traffic flow, fluid flow, information flow) in complex networks.

M. Kramar, E. Sikolya, B. Dorn, D. Mugnolo, al.

$e_j \equiv [0, 1]$, $x_j(\cdot, t)$: distribution of the material along an edge e_j at time $t \geq 0$

$$\begin{cases} \partial_t x_j(s, t) = c_j \partial_s x_j(s, t), & s \in (0, 1), t \geq 0, \\ \text{transport} \\ x_j(s, 0) = f_j(s), & s \in (0, 1) \\ \text{initial condition} \\ \Phi_{ij}^- c_j x_j(1, t) = w_{ij} \sum_{k=1}^m \Phi_{ik}^+ c_k x_k(0, t), & t \geq 0, \\ \text{junction condition} \end{cases}$$

for $i = 1, \dots, n$, and $j = 1, \dots, m$.

Evolution Equations on networks

- Heat/Diffusion: How heat or a substance diffuses through a network of pipes or wires.
- Wave Propagation: How signals (e.g., in a communication network, or pressure waves in a system of pipes) propagate and interact at junctions.
- Transport Processes: Modeling flows (e.g., traffic flow, fluid flow, information flow) in complex networks.

M. Kramar, E. Sikolya, B. Dorn, D. Mugnolo, al.

$e_j \equiv [0, 1]$, $x_j(\cdot, t)$: distribution of the material along an edge e_j at time $t \geq 0$

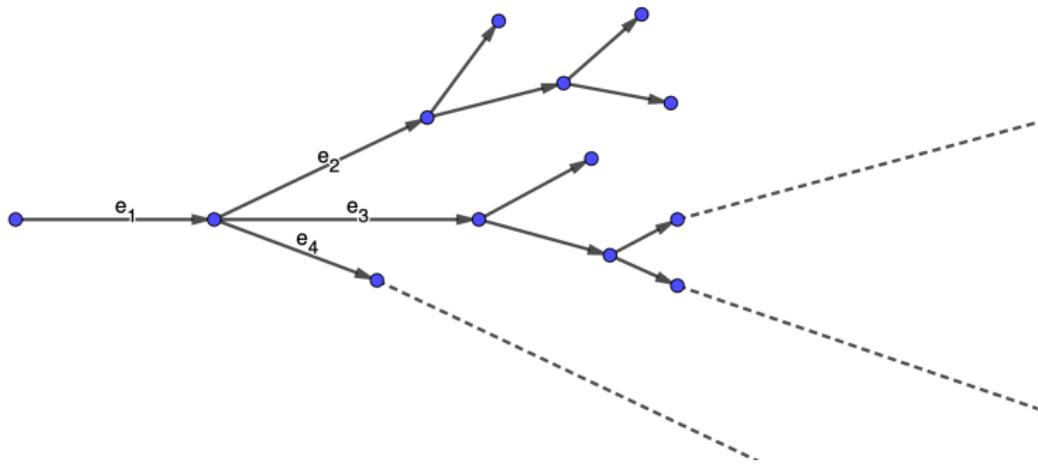
$$\begin{cases} \partial_t x_j(s, t) = c_j \partial_s x_j(s, t), & s \in (0, 1), t \geq 0, \\ \text{transport} \\ x_j(s, 0) = f_j(s), & s \in (0, 1) \\ \text{initial condition} \\ \Phi_{ij}^- c_j x_j(1, t) = w_{ij} \sum_{k=1}^m \Phi_{ik}^+ c_k x_k(0, t), & t \geq 0, \\ \text{junction condition} \end{cases}$$

for $i = 1, \dots, n$, and $j = 1, \dots, m$.

Directed metric trees

A locally finite *directed tree* without cycles $G = (V, E)$ becomes a *directed metric tree* if on every edge $e \in E$ we assign a coordinate $x_e \in [0, 1]$ which increases in the direction of the edge.

We will consider rooted directed metric trees, i.e. for which there exists an edge $e \in E$ such that for no edge $f \in E$ there exists a vertex v head of f and tail of e .



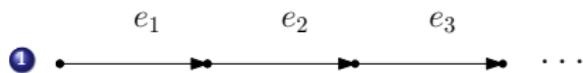
A directed metric tree $E = \{e_i \mid i \in I\}$ can be described through the matrix \mathcal{A} , whose entries are

$$(\mathcal{A})_{ij} = \begin{cases} 1 & \text{if there is a vertex } v \text{ such that } v \text{ is the head of } e_i \text{ and the tail of } e_j \\ 0 & \text{otherwise.} \end{cases}$$

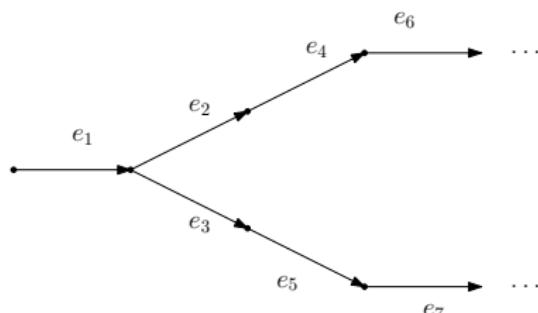
Due to the characteristics of the tree:

- $\forall j \in I : \text{card}(\{i \in I \mid \mathcal{A}_{ij} \neq 0\}) \leq 1$
- $\forall i \in I : \text{card}(\{i \in I \mid \mathcal{A}_{ij} \neq 0\}) < \aleph_0$
- $(\mathcal{A}^n)_{ij} \neq 0$ if and only if there exists a path of length n starting with edge e_i and ending with edge e_j .
- $M_n(i) = \{j \in I \mid (\mathcal{A}^n)_{ij} \neq 0\}$.

Examples



$$\mathcal{A} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 0 & 1 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$



$$\mathcal{A} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 1 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

Weighted L^p -spaces on directed metric trees

For every $i \in I$, let ρ_i be a strictly positive locally integrable function on $[0, 1]$ and set $\rho := (\rho_i)_{i \in I}$. For every $i \in I$, consider the weighted space

$$L_{\rho_i}^p[0, 1] := \{f : [0, 1] \rightarrow \mathbb{R} \mid f \text{ is measurable and } |f|^p \rho_i \in L^1[0, 1]\},$$

endowed with the norm

$$\|f\|_{p, \rho_i} = \left(\int_0^1 |f|^p \rho_i dx \right)^{\frac{1}{p}}$$

$$X_\rho^p := \ell^p \left(\bigoplus_{i \in I} L_{\rho_i}^p[0, 1] \right) = \left\{ (f_i)_{i \in I} \mid f_i \in L_{\rho_i}^p[0, 1] \text{ and } \sum_{i \in I} \|f_i\|_{p, \rho_i}^p < \infty \right\}.$$

Remark. If the tree is of the following type:



then clearly X_ρ^p is isometric to $L_{\tilde{\rho}}^p([0, +\infty[)$, with $\tilde{\rho}(s) = \rho_i(s - i)$ if $s \in [i, i + 1]$, via the isometry

$$(f_i)_{i \in I} \longmapsto f$$

where $f(s) = f_i(s - i)$ if $s \in [i, i + 1]$.

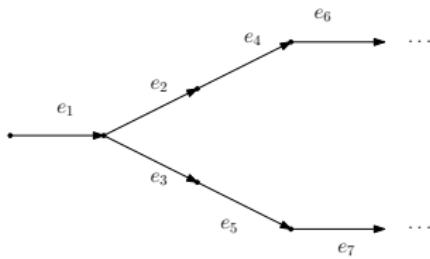
The translation semigroup on a directed metric tree

For $f \in X_\rho^p$ and $t \geq 0$:

$$(T_t f)(s) = \mathcal{A}^n f(t + s - n), \text{ for } s \in [0, 1] \text{ and } n \in \mathbb{N}_0 \text{ such that } n \leq t + s < n + 1,$$

The map defined in this way can intuitively be seen as a left translation with a "jump" given by the operator \mathcal{A} .

Example



$$(T_t f)(s) = \mathcal{A}f(t + s - 1) = (f_2 + f_3, f_4, f_5, f_6, \dots)(t + s - 1) \quad 1 < t + s < 2$$

$$(T_t f)(s) = \mathcal{A}^2 f(t + s - 2) = (f_4 + f_5, f_6, f_7, \dots)(t + s - 2) \quad 2 \leq t + s < 3$$

...

Proposition [M-VM]

Let ρ be a weight of the space X_ρ^p .

a The following assertions are equivalent:

- i The family $(T_t)_{t \geq 0}$ is a strongly continuous semigroup on X_ρ^1 ;
- ii there exist some constants $M \geq 1$ and $w \in \mathbb{R}$ such that for all $j \in I$

$$\rho_j(s) \leq M e^{wt} \rho_j(s + t - n),$$

for all $t \geq 0$, almost every $s \in [0, 1]$, $n \in \mathbb{N}_0$ such that $n \leq s + t < n + 1$ and all $i \in M_n(j)$.

b Let $1 < p < \infty$ then the following assertions are equivalent.

- i The family $(T_t)_{t \geq 0}$ is a strongly continuous semigroup on X_ρ^p ;
- ii there exist some constants $M \geq 1$ and $w \in \mathbb{R}$ such that for all $j \in I$

$$\left(\sum_{i \in M_n(j)} \frac{1}{\rho_i(s + t - n)^{p^*/p}} \right)^{p/p^*} \leq M e^{wt} \frac{1}{\rho_j(s)}$$

for all $t \geq 0$, almost every $s \in [0, 1]$, $n \in \mathbb{N}_0$ such that $n \leq s + t < n + 1$.

Remark.

If G has a leaf, then the translation semigroup cannot be hypercyclic in any admissible space X_ρ^p .

Indeed, if (v_{i_0}, v_{j_0}) are such that v_{j_0} is a leaf of G and there exists some edge $e_{k_0} = (v_{i_0}, v_{j_0})$, then $(T_t f)_{k_0}(s) = 0$ for all $t > 1$ and $0 \leq s \leq 1$, for every $f \in X_\rho^p$ and therefore the semigroup cannot be hypercyclic.

Theorem [M-VM]

Let $G = (V, E)$ be a rooted directed metric tree without leafs.

a The following assertions are equivalent:

- i the translation semigroup is hypercyclic on X_ρ^1 ;
- ii the translation semigroup is weakly mixing on X_ρ^1 ;
- iii there exists some increasing $(n_k)_{k \in \mathbb{N}} \in \mathbb{N}^\mathbb{N}$ such that for all $j \in I$:

$$\lim_{k \rightarrow \infty} \inf_{s \in [0,1]} \inf_{i \in M_{n_k}(j)} \rho_i(s) = 0.$$

b The following assertions are equivalent:

- i the translation semigroup is hypercyclic on X_ρ^p ;
- ii the translation semigroup is weakly mixing on X_ρ^p ;
- iii there exists some increasing $(n_k)_{k \in \mathbb{N}} \in \mathbb{N}^\mathbb{N}$ such that for all $j \in I$:

$$\lim_{k \rightarrow 0} \inf_{s \in [0,1]} \left(\sum_{i \in M_{n_k}(j)} \frac{1}{\rho_i(s)^{p^*/p}} \right)^{-1} = 0.$$

Remark.

$$\lim_{k \rightarrow 0} \inf_{s \in [0,1]} \left(\left(\mathcal{A}^{n_k} \frac{1}{\rho(s)(s)^{p^*/p}} \right)_j \right)^{-1} = 0$$

$$\left(\frac{1}{\rho^{p^*/p}} \right)_i = \frac{1}{\rho_i(s)^{p^*/p}}$$

Work in progress:

- study of chaos, frequent hypercyclicity,...
- spaces of continuous functions on directed metric trees with suitable "junctions" in the vertices.