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Topic

For fixed sequences u = (ui)i∈N, φ = (φi)i∈N, we consider the
weighted composition operator Wu,φ with symbols u, φ defined by
x 7→ u(x ◦φ) = (uixφi)i∈N. We characterize the continuity and the
compactness of the operator Wu,φ when it acts on the weighted
Banach spaces lp(v), 1 ≤ p ≤ ∞, and c0(v), with v = (vi)i∈N a
weight sequence on N. We extend these results to the case in
which the operator Wu,φ acts on Köthe echelon and co-echelon
spaces, sequence (LF)-spaces of type lp(V) and on (PLB)-spaces of
type ap(V), with p ∈ [1,∞]∪ {0} and V a system of weights on N.
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Outline

1. Weighted composition operators on Banach spaces;

2. Weighted composition operators on (PLB)- and (LF)-spaces.
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Weighted Composition Operators or Pseudo Shifts

For fixed u = (ui)i∈N, φ = (φi)i∈N ∈ ω, we can define the
weighted composition operator Wu,φ acting on ω with symbols
u, φ by setting

Wu,φ(x) := u(x ◦ φ) = (uixφi)i∈N, x = (xi)i∈N ∈ ω.

This operator is obtained by composition of two well-known
operators: the multiplication operator Mu and the composition
operator Cφ. In fact, when φ is the identity map on N, Wu,φ

becomes a multiplication operator which is defined pointwise by
Mu(x) := ux = (uixi)i∈N. If ui = 1 for all i ∈ N, then Wu,φ

becomes a composition operator defined as
Cφ(x) := x ◦ φ = (xφi)i∈N. Clearly, Wu,φ ∈ L(ω) for every pair
u, φ ∈ ω.
We denote by en, for n ∈ N, the element (δn,i)i∈N of ω.
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Sequence lp(v) spaces

Given a weight v, i.e., a positive sequence v = (vi)i∈N on N and
1 ≤ p ≤ ∞, we define as usual

lp(v) := {x = (xi)i∈N ∈ ω : ∥x∥p,v := ∥(xivi)i∈N∥p < ∞} ,

where ∥ · ∥p denotes the usual lp norm. For p = 0, we set

c0(v) :=

{
x = (xi)i∈N ∈ ω : lim

i→∞
vixi = 0

}
.

Clearly, (lp(v), ∥ · ∥p,v), 1 ≤ p ≤ ∞, are Banach spaces, and c0(v)
is a Banach space with the norm of l∞(v).
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Continuity of Wu,φ

Theorem

Let u = (ui)i∈N, φ = (φi)i∈N ∈ ω, let v, w be two weights on N
and 1 ≤ p < ∞. The weighted composition operator
Wu,φ ∈ L(lp(v), lp(w)) if, and only if, there exists M > 0 such that

1

vpn

∑
j∈φ−1(n)

|uj |pwp
j ≤ M, ∀n ∈ N,

where the sum is defined equal to 0 if φ−1(n) = ∅ for some n ∈ N.

For p = 2 the result was given in L.H. Khoi, D. Luan, Weighted
composition operators on weighted sequence spaces, Contemp.
Math. 645 (2015), 199–215.
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The proof

Proof

If the inequality is satisfied, then for every x ∈ lp(v) we have

∥Wu,φ(x)∥pp,w =
∑
j∈N

|uj |p|xφj |pw
p
j =

∑
n∈N

∑
j∈φ−1(n)

|uj |p|xn|pwp
j

=
∑
n∈N

|xn|p
∑

j∈φ−1(n)

|uj |pwp
j ≤ M

∑
n∈N

|xn|pvpn = M∥x∥pp,v.

This means that Wu,φ ∈ L(lp(v), lp(w)). Conversely, there exists
M > 0 such that ∥Wu,φ(x)∥pp,w ≤ M∥x∥pp,v for every x ∈ lp(v).
Fix n ∈ N such that φ−1(n) ̸= ∅. Observe that
Wu,φ(en) = (uj(en)φj )j∈N = (ujδn,φj )j∈N. Therefore, if x = en,
we get that∑

j∈φ−1(n)

|uj |pwp
j = ∥Wu,φ(en)∥pp,w ≤ M∥en∥pp,v = vpn.
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Continuity of Wu,φ

Remark

For p = ∞ the operator Wu,φ belongs to L(l∞(v), l∞(w)) if, and

only if, supn∈N
∥Wu,φ(en)∥∞,w

∥en∥∞,v
< ∞1. This is equivalent to the

existence of M > 0 such that

sup
j∈φ−1(n)

|uj |wj ≤ Mvn, ∀n ∈ N.

Remark

If we assume that φ : N → N is a proper map, then the operator
Wu,φ belongs to L(c0(v), c0(w)) if, and only if, Wu,φ belongs to
L(l∞(v), l∞(w)).

1C. Carpintero, J.C. Ramos-Fernández, J.E. Sanabria, Weighted
composition operators between two different weighted sequence spaces,
Advances in Pure and Applied Mathematics 13(2) (2022), 29–42.
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Compactness of Wu,φ

Theorem

Let u = (ui)i∈N, φ = (φi)i∈N ∈ ω, let v, w be two weights on N
and 1 ≤ p < ∞. Then Wu,φ ∈ K(lp(v), lp(w)) if, and only if, 1

vpn

∑
j∈φ−1(n)

|uj |pwp
j


n∈N

∈ c0.

For p = 2 the result was given in L.H. Khoi, D. Luan, Weighted
composition operators on weighted sequence spaces, Contemp.
Math. 645 (2015), 199–215.
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The proof

An idea

Case: 1 < p < ∞. Suppose that the operator Wu,φ is compact. As{
en

∥en∥p,v : n ∈ N
}
is a bounded subset of lp(v), it then follows that

the set
{

Wu,φ(en)
∥en∥p,v : n ∈ N

}
is relatively compact in lp(w). On the

other hand, the sequence
(

en
∥en∥p,v

)
n∈N

weakly converges to 0 in

lp(v), thus the set
{

Wu,φ(en)
∥en∥p,v : n ∈ N

}
is relatively weakly compact

in lp(w). Thus,
Wu,φ(en)
∥en∥p,v → 0 in lp(w).

Conversely, suppose that
(

1
vpn

∑
j∈φ−1(n) |uj |pw

p
j

)
n∈N

∈ c0. We fix

a bounded sequence (xi)i∈N of lp(v) and since lp(v) is a reflexive
Banach space, there exists a subsequence of (xi)i∈N, denoted
again by (xi)i∈N for the sake of simplicity, that weakly converges in
lp(v) to some x ∈ lp(v). It can be proved that
Wu,φ(xi) → Wu,φ(x) in lp(w).
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The proof

An idea

Case: p = 1. Suppose that Wu,φ is compact. Due to a Lemma,
the dual operator W ′

u,φ ∈ L
(
l∞

(
1
w

)
, l∞

(
1
v

))
maps c0

(
1
w

)
into

c0
(
1
v

)
and T := W ′

u,φ|c0( 1
w
) ∈ L

(
c0

(
1
w

)
, c0

(
1
v

))
. Therefore,

Wu,φ = T ′ ∈ L(l1(v), l1(w)) is also
σ
(
l1(v), c0(

1
v )
)
− σ

(
l1(w), c0(

1
w )

)
continuous, i.e., w*-w*

continuous. Arguing as before, we get that the set{
Wu,φ

(
en

∥en∥1,v

)
: n ∈ N

}
is relatively weakly* compact and

relatively compact in l1(w), thereby implying that

Wu,φ

(
en

∥en∥1,v

)
→ 0 in l1(w).

On the other way, if
(

1
vn

∑
j∈φ−1(n) |uj |wj

)
n∈N

∈ c0 and (xi)i∈N

is a bounded sequence of l1(v), since l1(v) ↪→ ω, there exists a
subsequence of (xi)i∈N convergent in ω to some x ∈ ω. It can be
shown that x ∈ l1(v) and Wu,φ(xi) → Wu,φ(x) in l1(w).
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Compactness of Wu,φ

Remark

For p = ∞ the operator Wu,φ belongs to K(l∞(v), l∞(w)) if, and

only if, we have limn→∞
∥Wu,φ(en)∥∞,w

∥en∥∞,v
= 0 2. This is equivalent to

require that

lim
n→∞

supj∈φ−1(n) |uj |wj

vn
= 0.

If p = 0 and φ : N → N is a proper map, then the operator Wu,φ

belongs to K(c0(v), c0(w)) if, and only if, it belongs to
K(l∞(v), l∞(w)).

2C. Carpintero, J.C. Ramos-Fernández, J.E. Sanabria, Weighted
composition operators between two different weighted sequence spaces,
Advances in Pure and Applied Mathematics 13(2) (2022), 29–42.
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(LF)- and (PLB)-spaces

Definition

A lcHs E is called an (LF)-space if there exists a sequence
{En}n∈N of Fréchet spaces with En ↪→ En+1 continuously such
that E =

⋃
n∈NEn and the topology of E coincides with the finest

locally convex topology for which each inclusion En ↪→ E is
continuous. In such a case, we simply write E = ind n∈NEn. The
space E = ind n∈NEn is called an (LB)-space if En is a Banach
space for all n ∈ N.
A lcHs E is called a (PLB)-space if there exists a sequence
{En}n∈N of (LB)-spaces with En+1 ↪→ En continuously, for
n ∈ N, such that E =

⋂
n∈NEn and the topology of E is the

coarsest locally convex topology for which each inclusion E ↪→ En

is continuous. In such a case, we simply write E = proj n∈NEn.
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Properties of (LF)-spaces

An (LF)-space E = ind n∈NEn is called regular (compactly
retractive, resp.) if every bounded (compact, resp.) subset B of E
is contained and bounded (compact, resp.) in En for some n ∈ N.
▶ Every complete (LF)-space is always regular.

▶ Characterization of regularity of (LF)-space.

▶ Continuity of linear operators between (LF)-spaces due to
Grothendieck.

▶ Let E = indm∈NEm and F = ind n∈N Fn be two (LF)-spaces.
Let T : E → F be a linear operator and assume that F is
compactly retractive. The operator T is compact if, and only
if, there exists n ∈ N such that for all m ∈ N we have that
T (Em) ⊂ Fn and the restriction T : Em → Fn is compact.
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Properties of (PLB)-spaces

▶ A (PLB)-space E = proj n∈NEn is complete whenever En is
a complete (LB)-space for an infinite number of indices n.

▶ Let E = proj n∈NEn be a (PLB)-space such that the
continuous inclusion E ↪→ En has dense range for all n ∈ N.
Let F = proj k∈N Fk be a (PLB)-space such that Fk is a
complete (LB)-space for all k ∈ N. Let T : E → F be a linear
operator. Then the following assertions hold true:

1. The operator T is continuous if, and only if, for all k ∈ N there
exists n ∈ N such that the operator T admits a unique linear
continuous extension Tn

k : En → Fk.
2. The operator T is compact if, and only if, there exists n ∈ N

such that for all k ∈ N the operator T admits a unique linear
extension Tn

k : En → Fk which is compact.
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Systems of weights

For all n ∈ N, let Vn = (vn,k)k∈N be a countable family of
(strictly) positive sequences, called weights, on N. We denote by V
the sequence (Vn)n∈N and we assume that the following two
conditions are satisfied:

1. vn,k(i) ≤ vn,k+1(i) for all n, k ∈ N and i ∈ N;
2. vn,k(i) ≥ vn+1,k(i) for all n, k ∈ N and i ∈ N.

The family V is called a system of weights on N.
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Sequence (LF)-spaces

Since lp(vn,k+1) is continuously included into lp(vn,k), the
sequence {lp(vn,k)}k∈N of Banach spaces forms a projective
spectrum. Hence, for all n ∈ N and 1 ≤ p ≤ ∞, we can consider
the Köthe echelon Fréchet spaces

λp(Vn) :=
⋂
k∈N

lp(vn,k) and λ0(Vn) :=
⋂
k∈N

c0(vn,k).

The sequence {λp(Vn)}n∈N of Fréchet spaces forms an inductive
spectrum. Thus, the spaces

lp(V) :=
⋃
n∈N

λp(Vn) (1 ≤ p ≤ ∞) and l0(V) :=
⋃
n∈N

λ0(Vn)

endowed with the inductive topologies, i.e., lp(V) = ind n∈N λp(Vn)
( l0(V) = ind n∈N λ0(Vn), resp.) are (LF)-spaces.
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Sequence (PLB)-spaces

Both the sequences {lp(vn,k)}n∈N and {c0(vn,k)}n∈N of Banach
spaces form an inductive spectrum. Hence, we can consider the
Köthe co-echelon spaces

ap(V
k) :=

⋃
n∈N

lp(vn,k) (1 ≤ p ≤ ∞) and a0(V
k) :=

⋃
n∈N

c0(vn,k),

which are (LB)-spaces when they are endowed with the inductive
topologies, i.e., ap(V

k) = ind n∈N lp(vn,k)
(a0(V

k) = ind n∈N c0(vn,k), resp.). The sequence {ap(V k)}k∈N of
(LB)-spaces forms a projective spectrum. Hence, the spaces

ap(V) :=
⋂
k∈N

ap(V
k) (1 ≤ p ≤ ∞) and a0(V) :=

⋂
k∈N

a0(V
k),

endowed with the projective topologies, i.e.,
ap(V) = proj k∈N ap(V

k) and a0(V) = proj k∈N a0(V
k) are

(PLB)-spaces.
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Continuity of Wu,φ between sequence (LF)-spaces

Theorem

Let V,W be two systems of weights on N and
φ = (φi)i∈N, u = (ui)i∈N ∈ ω. For 1 ≤ p < ∞, the following
properties are equivalent:

1. Wu,φ : lp(V) → lp(W) is well-defined;

2. Wu,φ : lp(V) → lp(W) is continuous;

3. For all m ∈ N there exists n ∈ N such that for all k ∈ N there
exist l ∈ N, M > 0 for which

1

vpm,l(i)

∑
j∈φ−1(i)

|uj |pwp
n,k(j) ≤ M, ∀i ∈ N,

where the sum is defined equal to 0 if φ−1(i) = ∅ for some
i ∈ N.
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Continuity of Wu,φ between sequence (LF)-spaces

Theorem

Let V,W be two systems of weights on N and
φ = (φi)i∈N, u = (ui)i∈N ∈ ω. If p = ∞, the following properties
are equivalent:

1. Wu,φ : l∞(V) → l∞(W) is well-defined;

2. Wu,φ : l∞(V) → l∞(W) is continuous;

3. For all m ∈ N there exists n ∈ N such that for all k ∈ N there
exist l ∈ N, M > 0 for which

sup
j∈φ−1(i)

|uj |wn,k(j) ≤ Mvm,l(i), ∀i ∈ N.

If p = 0 and φ : N → N is a proper map, then
Wu,φ : l0(V) → l0(W) is continuous if, and only if,
Wu,φ : l∞(V) → l∞(W) is continuous.
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Continuity of Wu,φ between sequence (PLB)-spaces

Theorem

Let V,W be two systems of weights on N and φ, u ∈ ω.

1. If 1 ≤ p < ∞, then Wu,φ : ap(V) → ap(W) is continuous if,
and only if, ∀k ∈ N ∃l ∈ N st ∀m ∈ N ∃n ∈ N, M > 0:

1

vpm,l(i)

∑
j∈φ−1(i)

|uj |pwp
n,k(j) ≤ M, ∀i ∈ N.

2. If p = ∞, then Wu,φ : a∞(V) → a∞(W) is continuous if, and
only if, ∀k ∈ N ∃l ∈ N st ∀m ∈ N ∃n ∈ N, M > 0:

sup
j∈φ−1(i)

|uj |wn,k(j) ≤ Mvm,l(i), ∀i ∈ N.

3. If φ : N → N is a proper map and W k = (wn,k)n∈N is
regularly decreasing ∀k ∈ N, then Wu,φ ∈ L(a0(V), a0(W) if,
and only if, Wu,φ ∈ L(a∞(V), a∞(W).
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Compactness of Wu,φ between sequence (LF)-spaces

Theorem

Let V,W be two system of weights on N and
φ = (φi)i∈N, u = (ui)i∈N ∈ ω. The following assertions hold true:

1. If 1 ≤ p < ∞ and lp(W) is compactly retractive, then
Wu,φ : lp(V) → lp(W) is compact if, and only if, there exists
n ∈ N such that for all m ∈ N there exists l ∈ N such that for
all k ∈ N

lim
i→∞

1

vpm,l(i)

∑
j∈φ−1(i)

|uj |pwp
n,k(j) = 0.
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Compactness of Wu,φ between sequence (LF)-spaces

Theorem

1. If p = ∞, l∞(W) is compactly retractive and the space
λ∞(Vm) is dense in l∞(vm,l) for all m, l ∈ N, then
Wu,φ : l∞(V) → l∞(W) is compact if, and only if, there exists
n ∈ N such that for all m ∈ N there exists l ∈ N such that for
all k ∈ N

lim
i→∞

supj∈φ−1(i) |uj |wn,k(j)

vm,l(i)
= 0.

2. If p = 0, l0(W) is compactly retractive and φ : N → N is a
proper map, then Wu,φ : l0(V) → l0(W) is compact if, and
only if, Wu,φ : l∞(V) → l∞(W) is compact.
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Compactness of Wu,φ between sequence (PLB)-spaces
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1
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Compactness of Wu,φ between sequence (PLB)-spaces

Theorem

Let V,W be two systems of weights on N and
φ = (φi)i∈N, u = (ui)i∈N ∈ ω. The following assertions hold true:

1. If p = ∞, a∞(V) is dense in a∞(V l) for all l ∈ N and the
sequence W k = (wn,k)n∈N is regularly decreasing for all
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lim
i→∞

supj∈φ−1(i) |uj |wn,k(j)

vm,l(i)
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