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Theorem (J.O)

For a web-compact topological space X; in particular por every
K-analytic or weakly countably determined space, the function
space Cp(X) is angelic

@ Overwolfach, plagiarism, THANKS FOR LIFE PEPE!!!!
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Theorem (J.O)

For a web-compact topological space X; in particular por every
K-analytic or weakly countably determined space, the function
space Cp(X) is angelic

@ Overwolfach, plagiarism, THANKS FOR LIFE PEPE!!!!

@ This result was later devolopped by different authors in
several books,.... J. Kakol, M. Lépez Pellicer, W. Kubis, ...
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LUR norms

If (E,| - ||) is a normed space, the norm || - || is said to be
locally uniformly rotund (LUR, for short) if

[im (201X + 20xall® ~ lx + xa[[2) = 0] = lim [lx — xa]| = 0
(1)

for any sequence {x,}7>; and any x in E. On the other hand,
|| - || is said to be rotund (R, for short), or strictly convex, if

2P +2llyIP ~ Ix+yI2=0] = |x =yl =0 ()
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[im (201X + 20xall® ~ lx + xa[[2) = 0] = lim [lx — xa]| = 0
(1)

for any sequence {x,}7>; and any x in E. On the other hand,
|| - || is said to be rotund (R, for short), or strictly convex, if

2P +2llyIP ~ Ix+yI2=0] = |x =yl =0 ()

An equivalent, more geometrical, definition of the LUR property
of the norm reads: If {x, X1, X2,...} C Sg and || x + x,|| — 2,
then || x — xn|| — O.

Q(x,¥) = 2|Ix[1? + 2|y * — |Ix + v (3)




Definition

A family of subsets N in a topological space (T,7) is a
network for the topology 7 if for every W € 7 and every x € W,
there is some N € N suchthatx e N c W.

A central result for the theory is the following one due to Molté,
Troyanski, Raja and myself:

Theorem (Slicely Network)

Let E be a normed space, F a norming subspace of E* and H
the family of all o(E, F)-open half-spaces in E. Then E admits
a o(E, F)-lower semicontinuous equivalent LUR norm if, and
only if, there is a sequence {An}°° , of subsets of E such that
for every e > 0 and every x € E there is a o(E, F)-open half
space H and an integer n such that

x € AnnNHand| - |-diam(A, N H) <e.
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Theorem (Open Localization Theorem)

Let A be a bounded subsetin E andC = {©;: i € I} be

o(E, F)-closed convex subsets of E.

Then, there is an equivalent o(E, F)-lower semicontinuous
norm || - ||c.a such that:

Ifx € A\ ©j, for some iy € I, and {xp}?° 4 is a sequence in E
such thatlim, Q.. ,(Xa, X) = 0, then there is a sequence
{in}p2 4 in I such that:

There is ny € N such that x € A\ ©;, foreach n > ny.
Moreover, if for some n > ny we have x, € A, then x, € A\ ©;,.
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Theorem (Open localization plus aproximation theorem)

Let A be a bounded subset in E andC := {©;: i € I} be a
family of convex and o(E, F)-closed subsets of E.
Then there is an equivalent o (E, F)-lower semicontinuous norm
| - llc.a on E such that given x € A\ © for some © € C and a
sequence {Xn};2¢ in E withlimp Q... ,(Xn, X) = 0, then there is
a sequence {in}°° , in | verifying the two following properties:
(i) Thereis ny € N withx € A\ ©;, for each n > ny. Moreover,
if X, € A for some n > ngy, then x, € A\ ©;,.
(i) Additionally we will still have the following approximation:
For every 6 > 0 there is some ns € N such that

(E;F)

X, Xp € co(A\ ©;) + 6B foralln>ns.  (4)
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Theorem (A-Convex Networking)

The following are equivalent:

(i) E admits a o(E, F)-lower semicontinuous equivalent LUR
norm.

(ii) If {An}72 4 denotes the sequence of balls centered at 0 and
having rational radius, and H denotes the family of all open
half-spaces defined by elements in F, then the family of sets
{AnNH: HeH, ne} is anetwork for the norm topology in E.
(iii) There is a sequence {An}7°  of o(E, F)-closed convex
subsets of E such that the family of sets

{An\©: ©eC,neN}

is a network for the norm topology in E.

(iv) There is a sequence {An}?° | of subsets of E such that the
family of sets {A,\ © : © € C,n € N} is a network for the norm
topology in E.
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Theorem (A new main LUR result)

A Banach space E, with a norming subspace F C E*, has an
equivalent o(E, F)-lower semicontinuous LUR norm if, and only
if:

There is a sequence {An}>° , of subsets of E such that, given
any x € E and e > 0, there is a o(E, F)-open half-space H and
n e N with

xe HNnA,c St +B(0,¢)

where S is a separable subset of E .

J. Orihuela



A Banach space E with a norming subspace F C E*, has an
equivalent o(E, F)-lower semicontinuous LUR norm if, and only

if, it has anoher one with separable denting faces of its closed
unit ball.
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New Examples

@ This result completely solves four problems asked by
Molto, Troyanski, Valdivia and myself. It is an extension of
Troyanski’s fundamental results (see Chapter IV in Deville
-Godefroy -Zizler book), as well as Raja’s theorems in LUR
renormings and Garcia-Oncina-Troyanski and J.O.

@ Banach spaces C(K), where K is a Rosenthal compact
space K C R (i.e., a compact space of Baire one
functions on a Polish space I, ) with at most countably
many discontinuity points for every s € K, (question asked
by R. Haydon, A.Molté and myself)
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Lindenstrauss’ Question 1976, Séminaire Choquet

Question: Characterize those Banach spaces which have
an equivalent strictly convex norm.
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Lindenstrauss’ Question 1976, Séminaire Choquet

Question: Characterize those Banach spaces which have
an equivalent strictly convex norm.

It is easily verified that every separable Banach space has an
strictly convex norm. The same is true for a general WCG
space. On the other hand, it was shown by Day that there exist
Banach spaces which do not have an equivalent strictly convex
norm.

Some conjectures concerning a possible answer to the
question were shown to be false by Dashiell and Lindenstrauss.
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Lindenstrauss’ Question 1976, Séminaire Choquet

Question: Characterize those Banach spaces which have
an equivalent strictly convex norm.

It is easily verified that every separable Banach space has an
strictly convex norm. The same is true for a general WCG
space. On the other hand, it was shown by Day that there exist
Banach spaces which do not have an equivalent strictly convex
norm.

Some conjectures concerning a possible answer to the
question were shown to be false by Dashiell and Lindenstrauss.
This results shows that even for C(K) spaces it seems to be a
delicate and presumably difficult question to decide under
which condition there exists an equivalent strictly convex norm.
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Definition

We say that a topological space (X, 7) is a Ty(x)-space or that
the topology 7 is Ty(x) if there is a system {W, : n € N},
where each W, is a family of open sets, such that for x # y
there is some p € N for which either we have

y ¢ Star(x, Wp) # 0 or x ¢ Star(y, Wp) # 0.

For a family F of subsets of X, let us remind you:
Star(x, F) := U{F :x e FeF}.

Systems {W, : n € N} are said to Ty(*)- separate points of E.
For a system {G,, : n € N}, where each G, consists of functions
from E into R, we say that {G, : n € N} Ty(x)- separates
points of E whenever the system {O,, : n inN} Ty(%)-
separates points of £, where O .= {Oy: g € Gp} forne N,
and

Oy :={xe E: g(x)>0}. (5)
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A Solution

Theorem (Strictly Convex Renorming)

Let E be a normed space with a norming subspace F C E*.
Then E admits an equivalent o( E, F)-lower semicontinuous
and strictly convex norm if, and only if, there are families G,
ne N, of o(E, F)-lower semicontinuous quasi-convex functions
defined on E such that the system {Gp, : n € N}
To(*)-separates points of E.
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A Solution

Theorem (Strictly Convex Renorming)

Let E be a normed space with a norming subspace F C E*.
Then E admits an equivalent o( E, F)-lower semicontinuous
and strictly convex norm if, and only if, there are families G,
ne N, of o(E, F)-lower semicontinuous quasi-convex functions
defined on E such that the system {Gp, : n € N}
To(*)-separates points of E.

R. Smith, S. Troyanski and J.O. proved this result where the
functions g above are in F and the open sets O, are open half
spaces.
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The dual case. A completely new result

Theorem (Strictly Convex Renorming)

Let E be a normed space. Then E* admits an equivalent
o(E*, E)-lower semicontinuous and strictly convex norm if, and
only if, (E,c(E*, E))-topology is a Ty(x)-space. In particular
weak-* homeomorphismes preserve dual strictly convex
renormings.
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The former result answers a recent question by R. Smith in J.
Math. Analysis Applications, where a proof for Asplund spaces
is given.
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The dual case. A completely new result

Theorem (Strictly Convex Renorming)

Let E be a normed space. Then E* admits an equivalent
o(E*, E)-lower semicontinuous and strictly convex norm if, and
only if, (E,o(E*, E))-topology is a To(x)-space. In particular
weak-* homeomorphismes preserve dual strictly convex
renormings.

The former result answers a recent question by R. Smith in J.
Math. Analysis Applications, where a proof for Asplund spaces
is given.

Previous approaches with S. Ferrari give us proofs in case the
dual unit sphere Sg- provide us a w* —Gs diagonal in

SE* X SE*-
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General answer to Lindenstrauss’ question
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General answer to Lindenstrauss’ question

Theorem

Let K be a compact space where every separable subset is
metrizable (i.e. a monolithic compact space). Then the Banach
space (S(K), || - ||s) of all continuous functions on K with
separable support admits a pointwise lower semicontinuous
and locally uniformly rotund renorming.Moreover the Banach
space (C(K),| - o) has an equivalent strictly convex norm.
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Historical context of our research

LUR-renorm. — Kadec-renorm.— Descriptive space— weakly
Cech-analytic — o-fragmentable
P. Enflo, G. Pisier and M. Talagrand
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MAIN QUESTIONS:

@ Does every Banach space E with the RNP admits an
equivalent R norm?

@ Does every Banach space with Fréchet differentiable norm
admits an equivalent R norm?
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MAIN QUESTIONS:

@ Does every Banach space E with the RNP admits an
equivalent R norm?

@ Does every Banach space with Fréchet differentiable norm
admits an equivalent R norm?

Thanks a lot for your attention
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A sunny Haydon forest

For every monolithic compact space K the space C(K) admits
an equivalent strictly convex norm
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A sunny Haydon forest

For every monolithic compact space K the space C(K) admits
an equivalent strictly convex norm

Theorem (Jubilee present for Pepe)

Every Banach space with a Fréchet differentiable norm admits
an equivalent LUR norm
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