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What to say about Pepe.....

A mathematician who is not also some-
thing of a poet will never be a complete
mathematician. – Karl Weierstrass (long
before Hardy)

Musicians (mathematicians) don’t retire;
they stop when there’s no more music in
them. – Louis Armstrong.
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Problems are often stated in vague terms...
because it is quite uncertain what the
problems really are. – John von Neumann



What do I mean by a metric invariant of a normed space X?

Simple, a small part (subset) SX ⊂ X, which when equipped with the natural distance d
provided by the norm allows us to identify the whole space X.

More precisely,

A challenge:
Suppose X and Y are two Banach/normed spaces, such that there is a surjective isometry
∆ : (SX , dX) → (SY , dY). Are X and Y isometrically isomorphic?
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[Mazur–Ulam theorem]
If X is a real normed space, the metric space (X, dX) is a metric invariant of X.

[Mankiewicz, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.’1972]
Let X be a real normed space. Any convex body (i.e., a closed convex subset with
non-empty interior) is a metric invariant for X. The closed unit ball of X, BX , is a metric
invariant of X.
Moreover, if X and Y are normed spaces, and ∆ : BX → BY is a surjective isometry. Then
there exists a surjective real linear isometry T : X → Y extending the original mapping ∆.

The non-emptiness of the topological interior of a convex body is crucial in the argu-
ments.

3 / 22



[Mazur–Ulam theorem]
If X is a real normed space, the metric space (X, dX) is a metric invariant of X.

[Mankiewicz, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.’1972]
Let X be a real normed space. Any convex body (i.e., a closed convex subset with
non-empty interior) is a metric invariant for X. The closed unit ball of X, BX , is a metric
invariant of X.

Moreover, if X and Y are normed spaces, and ∆ : BX → BY is a surjective isometry. Then
there exists a surjective real linear isometry T : X → Y extending the original mapping ∆.

The non-emptiness of the topological interior of a convex body is crucial in the argu-
ments.

3 / 22



[Mazur–Ulam theorem]
If X is a real normed space, the metric space (X, dX) is a metric invariant of X.

[Mankiewicz, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.’1972]
Let X be a real normed space. Any convex body (i.e., a closed convex subset with
non-empty interior) is a metric invariant for X. The closed unit ball of X, BX , is a metric
invariant of X.
Moreover, if X and Y are normed spaces, and ∆ : BX → BY is a surjective isometry. Then
there exists a surjective real linear isometry T : X → Y extending the original mapping ∆.

The non-emptiness of the topological interior of a convex body is crucial in the argu-
ments.

3 / 22



[Mazur–Ulam theorem]
If X is a real normed space, the metric space (X, dX) is a metric invariant of X.

[Mankiewicz, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.’1972]
Let X be a real normed space. Any convex body (i.e., a closed convex subset with
non-empty interior) is a metric invariant for X. The closed unit ball of X, BX , is a metric
invariant of X.
Moreover, if X and Y are normed spaces, and ∆ : BX → BY is a surjective isometry. Then
there exists a surjective real linear isometry T : X → Y extending the original mapping ∆.

Banach Center Photo Archives at KSU

The non-emptiness of the topological interior of a convex body is crucial in the argu-
ments.

3 / 22



[Mazur–Ulam theorem]
If X is a real normed space, the metric space (X, dX) is a metric invariant of X.

[Mankiewicz, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.’1972]
Let X be a real normed space. Any convex body (i.e., a closed convex subset with
non-empty interior) is a metric invariant for X. The closed unit ball of X, BX , is a metric
invariant of X.
Moreover, if X and Y are normed spaces, and ∆ : BX → BY is a surjective isometry. Then
there exists a surjective real linear isometry T : X → Y extending the original mapping ∆.

The non-emptiness of the topological interior of a convex body is crucial in the argu-
ments.

3 / 22



We are approaching to one of my favourites entertainments in recent years.

[Tingley’s problem (1987)]
Is the unit sphere of a normed space a metric invariant?
Moreover.... Let ∆ : S(X) → S(Y) be a surjective isometry between the unit spheres of
two normed spaces. Does there exist a surjective real linear isometry T : X → Y such that
T|S(X) = ∆?
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Is the unit sphere of a normed space a metric invariant?
Moreover.... Let ∆ : S(X) → S(Y) be a surjective isometry between the unit spheres of
two normed spaces. Does there exist a surjective real linear isometry T : X → Y such that
T|S(X) = ∆?

Caution!!
Tingley’s problem remains unsolved even in the simple case of a surjective isometry
between the unit spheres of two Banach spaces of dimension ≥ 3.
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[T. Banakh, J. Math. Anal. Appl.’2021]
The unit sphere of a 2-dimensional Banach space is a metric invariant in the class of
2-dimensional Banach spaces.
Every surjective isometry between the unit spheres of two 2-dimensional Banach spaces
extends to a surjective linear isometry between the spaces.

[Ding, Science in China’2002, M.M. Day, Trans. Amer. Math. Soc.’1947, Becerra, Cueto,
Fernández, Pe., J. Inst. Math. Jussieu’2019]
The unit sphere of a Hilbert space is a metric invariant. Moreover, every surjective
isometry from the unit sphere of a Hilbert space onto the unit sphere of a Banach space
extends to a surjective real linear isometry.
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We recall that a C∗-algebra is a complex Banach algebra A together with an algebra involu-
tion a 7→ a∗ satisfying the Gelfand-Naimark axiom ∥aa∗∥ = ∥a∥2 for all a ∈ A.

A von Neumann algebra is a C∗-algebra which is also a dual Banach space. For each com-
plex Hilbert space H, B(H) is a von Neumann algebra.

[Fernández-Polo, Pe., J. Math. Anal. Appl.’2018]
The unit sphere of a von Neumann algebra is a metric invariant in the class of von
Neumann algebras.
M and N → von Neumann algebras, ∆ : S(M) → S(N)→ surjective isometry. Then ∆

extends to a surjective real-linear isometry.
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[M. Mori, N. Ozawa, Studia Math.’2020]
The unit sphere of a unital C∗-algebra or of a real von Neumann algebra is a metric
invariant.
∆ : S(A) → S(E)→ surjective isometry, A → unital C∗-algebra or a real von Neumann
algebra, E → a real Banach space. Then ∆ extends to a surjective real-linear isometry.
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Are there strictly smaller metric
invariants?



It is natural to ask whether the unit sphere can be replaced by a strictly smaller subset as a
metric invariant.

The first natural candidate is, perhaps, the set ∂e(BX) of all extreme points of the closed
unit ball of X.

Obstacles:
✗ The set ∂e(BX) can be empty like in the case of c0 and K(H) for an infinite dimensional

Hilbert space X.

✗ We can have ∂e(BX) = S(X), for example, when X is a Hilbert space. This is just a
reformulation of Tingley’s problem.
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Apart from the extreme cases, the following example is worth to being recalled:

Example:
For X = R⊕∞ R, we have

∂e(BX) = {p1 = (1, 1), p2 = (1,−1), p3 = (−1, 1), p4 = (−1,−1)},

with d(pi, pj) = ∥pi − pj∥ = 2(1 − δi,j), for every i, j ∈ {1, . . . , 4}. The mapping
∆ : ∂e(BX) → ∂e(BX) defined by ∆(p1) = p2,∆(p2) = p3,∆(p3) = p4, and ∆(p4) = p1, is
a surjective isometry which cannot be extended to a real linear isometry on X.

[H. Choda, Y. Kijima, and Y. Nakagami, 1969]
A von Neumann algebra M is finite if and only if all the extreme points of its closed unit ball
are unitaries (i.e. they satisfy uu∗ = u∗u = 1), that is, ∂e(BM) = U(M) = {unitaries in M}.

In general, U(M) ⊊ ∂e(BM), even in the case M = B(H) for an infinite dimensional H.
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Hatori and Molnár succeeded in proving that the group of unitaries in
a von Neumann algebra is a metric invariant.

[O. Hatori, L. Molnar , J. Math. Anal. Appl.’2014]
Let W1 and W2 be von Neumann algebras. Then every surjective isometry
∆ : U(W1) → U(W2) admits a real linear extension to a surjective real linear isome-
try T : W1 → W2.

Problem:
The conclusion is not completely true for unital C∗-algebras essentially because the group
of unitaries is not, in general, connected [O. Hatori, Studia Math.’2014]
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In words of Alfsen and Shultz “When a C∗-algebra or a von Neumann algebra is used as an
algebraic model of quantum mechanics, then it is only the self-adjoint part of the algebra
that represents observables. However, the self-adjoint part of such an algebra is not closed
under the given associative product, but only under the Jordan product a ◦ b = 1

2(ab + ba).
Therefore it has been proposed to model quantum mechanics on Jordan algebras rather
than associative algebras.”

During the decade of the thirties in the XXth century, P. Jordan, J. von Neumann, E. Wigner
and some other authors introduced the notion of Jordan algebra as a mathematical model
for quantum mechanics.
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Jordan algebra
A complex Jordan algebra M is a (non-necessarily associative) algebra over the complex
field whose product (denoted by ◦) is abelian and satisfies the so-called Jordan identity:

(a ◦ b) ◦ a2 = a ◦ (b ◦ a2), (a, b ∈ M).

A Jordan-Banach algebra is a Jordan algebra M equipped with a complete norm, ∥.∥,
satisfying ∥a ◦ b∥ ≤ ∥a∥ ∥b∥ (a, b ∈ M).

[Kaplansky’1976]
A JB∗-algebra is a complex Jordan-Banach algebra M equipped with an algebra involution
“∗” satisfying an appropriate Gelfand-Naimark axiom: ∥Ua(a∗)∥ = ∥a∥3 for all a ∈ M,
where Ua(b) = 2(a ◦ b) ◦ b)− b ◦ a2.
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A JBW∗-algebra is a JB∗-algebras which is also a dual Banach space.

As in the case of C∗-algebras, an element u in a unital JB∗-algebra is called unitary if it is
invertible with inverse u∗.

[Cueto, Pe., Linear Multilinear Algebra’2022, Cueto, Enami, Hirota, Miura, Pe., Linear
Algebra Appl.’2022]
Let J1 and J2 be JBW∗-algebras. Then every surjective isometry∆ : U(J1) → U(J2) admits
a real linear extension to a surjective real linear isometry T : J1 → J2.
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The sphere of positive elements as a
metric invariant



Another natural candidate as a metric invariant for a C∗-algebra A is the set S(A+) of all
norm-one positive elements in A. The corresponding version of the extension problem is
known as Tingley’s problem for positive elements.

Tingley’s problem for positive elements
Suppose X and Y are partially ordered Banach spaces with cones of positive elements
denoted by X+ and Y+, respectively, having additional “nice-geometric properties”.
Suppose ∆ : S(X+) → S(Y+) is a surjective isometry. Can we extend ∆ to a surjective
linear isometry from X onto Y?

This makes sense for many well-known structures, for example every C∗-algebra and ev-
ery JB∗-algebra with their cones of positive elements.
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As we commented above B(H) is an example of a von Neumann algebra.

[G. Nagy , Publ. Math. Debrecen’2018]
Let H and H′ be two finite-dimensional complex Hilbert spaces. Suppose
∆ : S(B(H)+) → S(B(H′)+) is a surjective isometry. Then ∆ extends to a surjective
linear isometry from B(H) onto B(H′).

Nagy posed the problem whether the above conclusion holds for infinite-dimensional
Hilbert spaces H and H′.
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We presented a complete solution to Nagy’s question in 2019.

[Pe., Banach J. Math. Anal.’2019]
Let H1, H2, H3 and H4 be complex Hilbert spaces, where H3 and H4 are infinite-dimensional
and separable. Then every surjective isometry ∆ : S(B(H1)

+) → S(B(H2)
+) (respectively,

∆ : S(K(H3)
+) → S(K(H4)

+)) admits a unique extension to a surjective complex linear
isometry from B(H1) onto B(H2) (respectively, from K(H3) onto K(H4)).

We are not going to enter into the details of the technical arguments, which are somehow
complicated. However, there is a tool specially designed to attack this problem which de-
serves to be commented.
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Let E and P be subsets of a Banach space X. We define the unit sphere around E in P as the
set

Sph(E; P) := {x ∈ P : ∥x − b∥ = 1 for all b ∈ E}.

If x is an element in X, we write Sph(x; P) for Sph({x}; P). If E is a subset of a C∗-algebra A,
we shall write Sph+(E) or Sph+

A (E) for the set Sph(E; S(A+)). For each element a in A, we
shall write Sph+(a) instead of Sph+({a}).

Let me note that we only need “geometry” and a good knowledge of the sets E and P to
“control” the above spheres.
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The amazing connections between algebra and geometry come out now.....

[Pe., Adv. Oper. Theory’2018], [X.Q. Lu, C.K. Ng, J. Math. Anal. Appl.’2024]
Let a be a norm-one positive element in a C∗-algebra A, and consider the following
statements:

(a) a is a projection (i.e., a self-adjoint projection);

(b) Sph+
A
(

Sph+
A ({a})

)
= {a}.

Then (b) ⇒ (a). Furthermore (a) ⇔ (b) when A = B(H) or an atomic von Neumann
algebra or K(H2), where H2 is an infinite-dimensional and separable complex Hilbert
space. Equivalence also holds when A is a type I von Neumann algebra.
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Tingley’s problem for positive elements has been also successfully explored
in other classes of C∗-algebras.

[C.W. Leung, C.K. Ng, N.C. Wong , Trans. Amer. Math. Soc.’2025]
Let M and N be two von Neumann algebras. Then every surjective isometry
∆ : S(M+) → S(N+) extends to a Jordan ∗-isomorphism from M onto N.

[Leung, Ng, Wong, J. Math. Anal. Appl.’2025]
Let a be a norm-one positive element in a von Neumann algebra M. Then the following
statements are equivalent:

(a) a is a projection;

(b) Sph+
A
(

Sph+
A ({a})

)
= {a}.
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[Saavedra, Pe. preprint’2025]
Let a be a norm-one positive element in a JBW∗-algebra J. Then the following statements
are equivalent:

(a) a is a projection;

(b) Sph+
J

(
Sph+

J ({a})
)
= {a}.

[Saavedra, Pe. preprint’2025]
Let J and M be two JBW∗-algebras such that the type I2 part of J is atomic. Then every
surjective isometry ∆ : S(J+) → S(M+) extends to a Jordan ∗-isomorphism from J onto
M.
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Thanks for spending part of your time listening this talk!!!
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