

Hypercyclic and mixing composition operators on $\mathcal{O}_M(\mathbb{R})$

Adam Przestacki
Adam Mickiewicz University, Poznań

**Workshop on Functional Analysis on the Occasion of José
Bonet's 70th Birthday**

Linear dynamics

Given a TVS (topological vector space) X and an operator (i.e. a continuous linear map) $T : X \rightarrow X$ study the properties of the sequence $(T^n)_{n \in \mathbb{N}}$ of iterates of T , where

$$T^n = \underbrace{T \circ \dots \circ T}_{n-times}.$$

Linear dynamics

Hypercyclic operators

Linear dynamics

Hypercyclic operators

An operator $T: X \rightarrow X$ is called hypercyclic if there exists a vector $x \in X$ such that the set (called **the orbit of x under T**)

$$\{T^n x : n \in \mathbb{N}\}$$

is dense in X .

Linear dynamics

Hypercyclic operators

An operator $T: X \rightarrow X$ is called hypercyclic if there exists a vector $x \in X$ such that the set (called **the orbit of x under T**)

$$\{T^n x : n \in \mathbb{N}\}$$

is dense in X .

The operators:

Linear dynamics

Hypercyclic operators

An operator $T: X \rightarrow X$ is called hypercyclic if there exists a vector $x \in X$ such that the set (called **the orbit of x under T**)

$$\{T^n x : n \in \mathbb{N}\}$$

is dense in X .

The operators:

- (Rolewicz) $2B: \ell_2 \rightarrow \ell_2, (x_1, x_2, x_3, \dots) \mapsto (2x_2, 2x_3, 2x_4, \dots)$

Linear dynamics

Hypercyclic operators

An operator $T: X \rightarrow X$ is called hypercyclic if there exists a vector $x \in X$ such that the set (called **the orbit of x under T**)

$$\{T^n x : n \in \mathbb{N}\}$$

is dense in X .

The operators:

- (Rolewicz) $2B: \ell_2 \rightarrow \ell_2$, $(x_1, x_2, x_3, \dots) \mapsto (2x_2, 2x_3, 2x_4, \dots)$
- (MacLane) $T: H(\mathbb{C}) \rightarrow H(\mathbb{C})$, $f(\cdot) \mapsto f(\cdot + 1)$

Linear dynamics

Hypercyclic operators

An operator $T: X \rightarrow X$ is called hypercyclic if there exists a vector $x \in X$ such that the set (called **the orbit of x under T**)

$$\{T^n x : n \in \mathbb{N}\}$$

is dense in X .

The operators:

- (Rolewicz) $2B: \ell_2 \rightarrow \ell_2$, $(x_1, x_2, x_3, \dots) \mapsto (2x_2, 2x_3, 2x_4, \dots)$
- (MacLane) $T: H(\mathbb{C}) \rightarrow H(\mathbb{C})$, $f(\cdot) \mapsto f(\cdot + 1)$
- (Birkhoff) $T: H(\mathbb{C}) \rightarrow H(\mathbb{C})$, $f \mapsto f'$

Linear dynamics

Hypercyclic operators

An operator $T: X \rightarrow X$ is called hypercyclic if there exists a vector $x \in X$ such that the set (called **the orbit of x under T**)

$$\{T^n x : n \in \mathbb{N}\}$$

is dense in X .

The operators:

- (Rolewicz) $2B: \ell_2 \rightarrow \ell_2$, $(x_1, x_2, x_3, \dots) \mapsto (2x_2, 2x_3, 2x_4, \dots)$
- (MacLane) $T: H(\mathbb{C}) \rightarrow H(\mathbb{C})$, $f(\cdot) \mapsto f(\cdot + 1)$
- (Birkhoff) $T: H(\mathbb{C}) \rightarrow H(\mathbb{C})$, $f \mapsto f'$

are hypercyclic.

Linear dynamics

How to show that an operator is hypercyclic?

Linear dynamics

How to show that an operator is hypercyclic?

Linear dynamics

How to show that an operator is hypercyclic?

- We can construct a hypercyclic vector.

Linear dynamics

How to show that an operator is hypercyclic?

- We can construct a hypercyclic vector.
- In some cases we can use Birkhoff Transitivity Theorem.

Linear dynamics

How to show that an operator is hypercyclic?

- We can construct a hypercyclic vector.
- In some cases we can use Birkhoff Transitivity Theorem.

An operator $T: X \rightarrow X$ is topologically transitive if for any non-empty and open subsets U, V in X there is $n \in \mathbb{N}$ with $T^n(U) \cap V \neq \emptyset$.

Linear dynamics

How to show that an operator is hypercyclic?

- We can construct a hypercyclic vector.
- In some cases we can use Birkhoff Transitivity Theorem.

An operator $T: X \rightarrow X$ is topologically transitive if for any non-empty and open subsets U, V in X there is $n \in \mathbb{N}$ with $T^n(U) \cap V \neq \emptyset$.

Birkhoff Transitivity Theorem

Let T be an operator on a **separable Fréchet space** X . TFAE:

- ① T is hypercyclic.
- ② T is topologically transitive.

Linear dynamics

How to show that an operator is hypercyclic?

- We can construct a hypercyclic vector.
- In some cases we can use Birkhoff Transitivity Theorem.

An operator $T: X \rightarrow X$ is topologically transitive if for any non-empty and open subsets U, V in X there is $n \in \mathbb{N}$ with $T^n(U) \cap V \neq \emptyset$.

Birkhoff Transitivity Theorem

Let T be an operator on a **separable Fréchet space** X . TFAE:

- ① T is hypercyclic.
- ② T is topologically transitive.

A **Fréchet space** is a complete TVS which topology can be generated by a countable family of seminorms.

An operator $T: X \rightarrow X$ is called:

An operator $T: X \rightarrow X$ is called:

- **hypercyclic** if there exists a vector $x \in X$ such that the set $\{T^n x : n \in \mathbb{N}\}$ is dense in X .

An operator $T: X \rightarrow X$ is called:

- **hypercyclic** if there exists a vector $x \in X$ such that the set $\{T^n x : n \in \mathbb{N}\}$ is dense in X .
- **topologically transitive** if for any non-empty and open subsets U, V in X there is $n \in \mathbb{N}$ with $T^n(U) \cap V \neq \emptyset$.

An operator $T: X \rightarrow X$ is called:

- **hypercyclic** if there exists a vector $x \in X$ such that the set $\{T^n x : n \in \mathbb{N}\}$ is dense in X .
- **topologically transitive** if for any non-empty and open subsets U, V in X there is $n \in \mathbb{N}$ with $T^n(U) \cap V \neq \emptyset$.
- **mixing** if for any non-empty and open subsets U, V in X there is $N \in \mathbb{N}$ with $T^n(U) \cap V \neq \emptyset$ for every $n \geq N$.

An operator $T: X \rightarrow X$ is called:

- **hypercyclic** if there exists a vector $x \in X$ such that the set $\{T^n x : n \in \mathbb{N}\}$ is dense in X .
- **topologically transitive** if for any non-empty and open subsets U, V in X there is $n \in \mathbb{N}$ with $T^n(U) \cap V \neq \emptyset$.
- **mixing** if for any non-empty and open subsets U, V in X there is $N \in \mathbb{N}$ with $T^n(U) \cap V \neq \emptyset$ for every $n \geq N$.

In general:

$\text{mixing} \Rightarrow \text{topologically transitive}$

and

$\text{hypercyclic} \Rightarrow \text{topologically transitive}$

Compositions operators

Compositions operators

- X : a TVS consisting of functions on \mathbb{R}

Compositions operators

- X : a TVS consisting of functions on \mathbb{R}
- $\psi: \mathbb{R} \rightarrow \mathbb{R}$

Compositions operators

- X : a TVS consisting of functions on \mathbb{R}
- $\psi: \mathbb{R} \rightarrow \mathbb{R}$

Compositions operators

- X : a TVS consisting of functions on \mathbb{R}
- $\psi: \mathbb{R} \rightarrow \mathbb{R}$

Composition operator

$$C_\psi : X \rightarrow X, f \mapsto f \circ \psi$$

Compositions operators

- X : a TVS consisting of functions on \mathbb{R}
- $\psi: \mathbb{R} \rightarrow \mathbb{R}$

Composition operator

$$C_\psi: X \rightarrow X, f \mapsto f \circ \psi$$

Two questions

Compositions operators

- X : a TVS consisting of functions on \mathbb{R}
- $\psi: \mathbb{R} \rightarrow \mathbb{R}$

Composition operator

$$C_\psi : X \rightarrow X, f \mapsto f \circ \psi$$

Two questions

- 1 When this operator is well-defined?

Compositions operators

- X : a TVS consisting of functions on \mathbb{R}
- $\psi: \mathbb{R} \rightarrow \mathbb{R}$

Composition operator

$$C_\psi : X \rightarrow X, f \mapsto f \circ \psi$$

Two questions

- 1 When this operator is well-defined?
- 2 What are the dynamical properties of this operator?

The space of smooth functions

$$C^\infty(\mathbb{R}) = \{f: \mathbb{R} \rightarrow \mathbb{R} \text{ smooth}\}$$

The space of smooth functions

$$C^\infty(\mathbb{R}) = \{f: \mathbb{R} \rightarrow \mathbb{R} \text{ smooth}\}$$

This is a Fréchet space, a sequence $(p_n)_{n \in \mathbb{N}}$ of seminorms is given by

$$p_n(f) = \max_{x \in [-n, n]} \max_{0 \leq i \leq n} |f^{(i)}(x)|$$

The translation is hypercyclic

Theorem

Let $\psi(x) = x + 1$. The operator $C_\psi : C^\infty(\mathbb{R}) \rightarrow C^\infty(\mathbb{R})$ is hypercyclic.

The translation is hypercyclic

Theorem

Let $\psi(x) = x + 1$. The operator $C_\psi : C^\infty(\mathbb{R}) \rightarrow C^\infty(\mathbb{R})$ is hypercyclic.

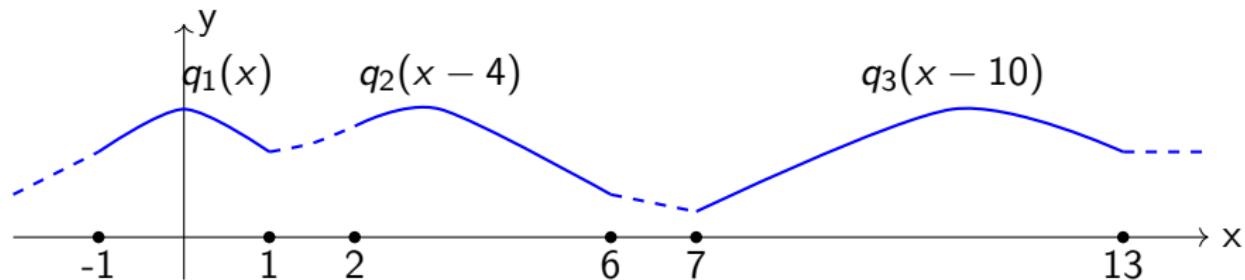
Proof: Let $(q_n)_{n \in \mathbb{N}}$ be a sequence of all polynomials with rational coefficients, every polynomial is in the sequence infinitely many times.

The translation is hypercyclic

Theorem

Let $\psi(x) = x + 1$. The operator $C_\psi : C^\infty(\mathbb{R}) \rightarrow C^\infty(\mathbb{R})$ is hypercyclic.

Proof: Let $(q_n)_{n \in \mathbb{N}}$ be a sequence of all polynomials with rational coefficients, every polynomial is in the sequence infinitely many times.

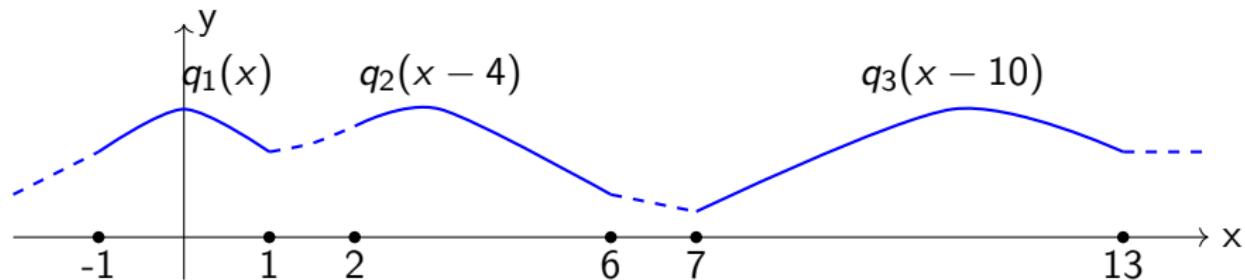


The translation is hypercyclic

Theorem

Let $\psi(x) = x + 1$. The operator $C_\psi : C^\infty(\mathbb{R}) \rightarrow C^\infty(\mathbb{R})$ is hypercyclic.

Proof: Let $(q_n)_{n \in \mathbb{N}}$ be a sequence of all polynomials with rational coefficients, every polynomial is in the sequence infinitely many times.



Then

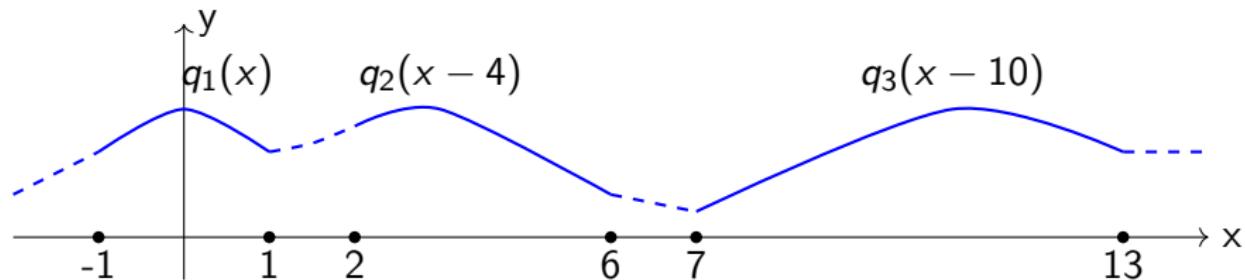
- $f = q_1$ on $[-1, 1]$

The translation is hypercyclic

Theorem

Let $\psi(x) = x + 1$. The operator $C_\psi : C^\infty(\mathbb{R}) \rightarrow C^\infty(\mathbb{R})$ is hypercyclic.

Proof: Let $(q_n)_{n \in \mathbb{N}}$ be a sequence of all polynomials with rational coefficients, every polynomial is in the sequence infinitely many times.



Then

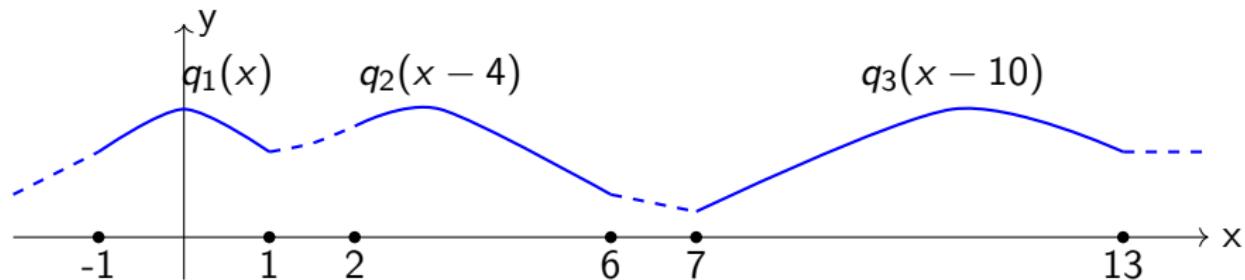
- $f = q_1$ on $[-1, 1]$
- $C_\psi^4(f) = q_2$ on $[-2, 2]$

The translation is hypercyclic

Theorem

Let $\psi(x) = x + 1$. The operator $C_\psi : C^\infty(\mathbb{R}) \rightarrow C^\infty(\mathbb{R})$ is hypercyclic.

Proof: Let $(q_n)_{n \in \mathbb{N}}$ be a sequence of all polynomials with rational coefficients, every polynomial is in the sequence infinitely many times.



Then

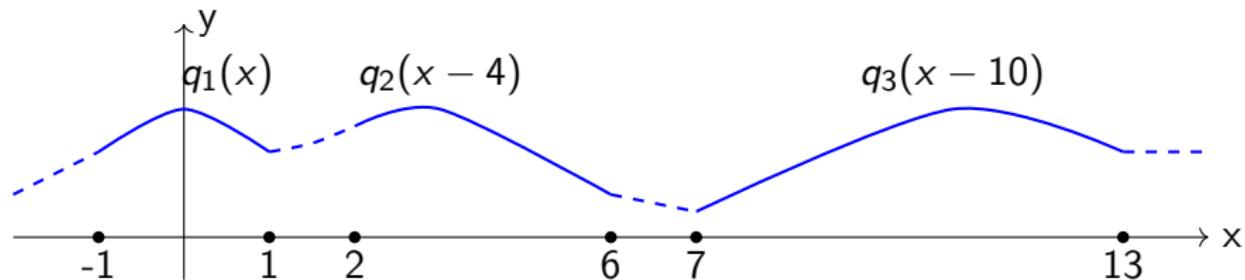
- $f = q_1$ on $[-1, 1]$
- $C_\psi^4(f) = q_2$ on $[-2, 2]$
- $C_\psi^{10}(f) = q_3$ on $[-3, 3]$

The translation is hypercyclic

Theorem

Let $\psi(x) = x + 1$. The operator $C_\psi : C^\infty(\mathbb{R}) \rightarrow C^\infty(\mathbb{R})$ is hypercyclic.

Proof: Let $(q_n)_{n \in \mathbb{N}}$ be a sequence of all polynomials with rational coefficients, every polynomial is in the sequence infinitely many times.



Then

- $f = q_1$ on $[-1, 1]$
- $C_\psi^4(f) = q_2$ on $[-2, 2]$
- $C_\psi^{10}(f) = q_3$ on $[-3, 3]$
- $C_\psi^{a_n}(f) = q_n$ on $[-n, n]$

Theorem

For a smooth function $\psi: \mathbb{R} \rightarrow \mathbb{R}$ TFAE:

- 1 For all $x \in \mathbb{R}$ we have that $\psi(x) \neq x$ and $\psi'(x) \neq 0$.
- 2 The operator $C_\psi: C^\infty(\mathbb{R}) \rightarrow C^\infty(\mathbb{R})$ is hypercyclic.
- 3 The operator $C_\psi: C^\infty(\mathbb{R}) \rightarrow C^\infty(\mathbb{R})$ is mixing.

The Schwartz space of rapidly decreasing smooth functions

$$\mathcal{S}(\mathbb{R}) = \{f \in C^\infty(\mathbb{R}) : \lim_{|x| \rightarrow \infty} f^{(j)}(x)x^n = 0 \text{ for all } n, j \geq 0\}$$

The Schwartz space of rapidly decreasing smooth functions

$$\mathcal{S}(\mathbb{R}) = \{f \in C^\infty(\mathbb{R}) : \lim_{|x| \rightarrow \infty} f^{(j)}(x)x^n = 0 \text{ for all } n, j \geq 0\}$$

This is a Fréchet space, the topology is generated by the sequence of seminorms:

$$p_N(f) := \max_{0 \leq i \leq N} \sup_{x \in \mathbb{R}} (1 + x^2)^N |f^{(i)}(x)|$$

The Schwartz space of rapidly decreasing smooth functions

$$\mathcal{S}(\mathbb{R}) = \{f \in C^\infty(\mathbb{R}) : \lim_{|x| \rightarrow \infty} f^{(j)}(x)x^n = 0 \text{ for all } n, j \geq 0\}$$

This is a Fréchet space, the topology is generated by the sequence of seminorms:

$$p_N(f) := \max_{0 \leq i \leq N} \sup_{x \in \mathbb{R}} (1 + x^2)^N |f^{(i)}(x)|$$

Galbis, Jordá: a description of well-defined composition operators

The Schwartz space of rapidly decreasing smooth functions

$$\mathcal{S}(\mathbb{R}) = \{f \in C^\infty(\mathbb{R}) : \lim_{|x| \rightarrow \infty} f^{(j)}(x)x^n = 0 \text{ for all } n, j \geq 0\}$$

This is a Fréchet space, the topology is generated by the sequence of seminorms:

$$p_N(f) := \max_{0 \leq i \leq N} \sup_{x \in \mathbb{R}} (1 + x^2)^N |f^{(i)}(x)|$$

Galbis, Jordá: a description of well-defined composition operators

Let $f \in \mathcal{S}(\mathbb{R})$.

The Schwartz space of rapidly decreasing smooth functions

$$\mathcal{S}(\mathbb{R}) = \{f \in C^\infty(\mathbb{R}) : \lim_{|x| \rightarrow \infty} f^{(j)}(x)x^n = 0 \text{ for all } n, j \geq 0\}$$

This is a Fréchet space, the topology is generated by the sequence of seminorms:

$$p_N(f) := \max_{0 \leq i \leq N} \sup_{x \in \mathbb{R}} (1 + x^2)^N |f^{(i)}(x)|$$

Galbis, Jordá: a description of well-defined composition operators

Let $f \in \mathcal{S}(\mathbb{R})$. There is M with $|f(x)| \leq M$ for $x \in \mathbb{R}$.

The Schwartz space of rapidly decreasing smooth functions

$$\mathcal{S}(\mathbb{R}) = \{f \in C^\infty(\mathbb{R}) : \lim_{|x| \rightarrow \infty} f^{(j)}(x)x^n = 0 \text{ for all } n, j \geq 0\}$$

This is a Fréchet space, the topology is generated by the sequence of seminorms:

$$p_N(f) := \max_{0 \leq i \leq N} \sup_{x \in \mathbb{R}} (1 + x^2)^N |f^{(i)}(x)|$$

Galbis, Jordá: a description of well-defined composition operators

Let $f \in \mathcal{S}(\mathbb{R})$. There is M with $|f(x)| \leq M$ for $x \in \mathbb{R}$.

For all n and all $x \in \mathbb{R}$ we have

$$|C_\psi^n(f)(x)| \leq M.$$

The Schwartz space of rapidly decreasing smooth functions

$$\mathcal{S}(\mathbb{R}) = \{f \in C^\infty(\mathbb{R}) : \lim_{|x| \rightarrow \infty} f^{(j)}(x)x^n = 0 \text{ for all } n, j \geq 0\}$$

This is a Fréchet space, the topology is generated by the sequence of seminorms:

$$p_N(f) := \max_{0 \leq i \leq N} \sup_{x \in \mathbb{R}} (1 + x^2)^N |f^{(i)}(x)|$$

Galbis, Jordá: a description of well-defined composition operators

Let $f \in \mathcal{S}(\mathbb{R})$. There is M with $|f(x)| \leq M$ for $x \in \mathbb{R}$.

For all n and all $x \in \mathbb{R}$ we have

$$|C_\psi^n(f)(x)| \leq M.$$

There are no hypercyclic composition operators acting on $\mathcal{S}(\mathbb{R})$

The space of slowly increasing smooth functions

Joint work with Thomas Kalmes (Chemnitz, Germany)

The space of slowly increasing smooth functions

$$\mathcal{O}_M(\mathbb{R}) = \{f \in C^\infty(\mathbb{R}) : f \cdot v \in \mathcal{S}(\mathbb{R}) \text{ for every } v \in \mathcal{S}(\mathbb{R})\}$$

The space of slowly increasing smooth functions

$$\mathcal{O}_M(\mathbb{R}) = \{f \in C^\infty(\mathbb{R}) : f \cdot v \in \mathcal{S}(\mathbb{R}) \text{ for every } v \in \mathcal{S}(\mathbb{R})\}$$

$$\mathcal{O}_M(\mathbb{R}) = \bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \mathcal{O}_n^m(\mathbb{R}),$$

where

$$\mathcal{O}_n^m(\mathbb{R}) := \left\{ f \in C^m(\mathbb{R}) : |f|_{m,n} := \sup_{x \in \mathbb{R}, 0 \leq j \leq m} (1 + |x|^2)^{-n} |f^{(j)}(x)| < \infty \right\}$$

The space of slowly increasing smooth functions

$$\mathcal{O}_M(\mathbb{R}) = \{f \in C^\infty(\mathbb{R}) : f \cdot v \in \mathcal{S}(\mathbb{R}) \text{ for every } v \in \mathcal{S}(\mathbb{R})\}$$

$$\mathcal{O}_M(\mathbb{R}) = \bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \mathcal{O}_n^m(\mathbb{R}),$$

where

$$\mathcal{O}_n^m(\mathbb{R}) := \left\{ f \in C^m(\mathbb{R}) : |f|_{m,n} := \sup_{x \in \mathbb{R}, 0 \leq j \leq m} (1 + |x|^2)^{-n} |f^{(j)}(x)| < \infty \right\}$$

The space $\mathcal{O}_M(\mathbb{R})$ with its natural locally convex topology is:

The space of slowly increasing smooth functions

$$\mathcal{O}_M(\mathbb{R}) = \{f \in C^\infty(\mathbb{R}) : f \cdot v \in \mathcal{S}(\mathbb{R}) \text{ for every } v \in \mathcal{S}(\mathbb{R})\}$$

$$\mathcal{O}_M(\mathbb{R}) = \bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \mathcal{O}_n^m(\mathbb{R}),$$

where

$$\mathcal{O}_n^m(\mathbb{R}) := \left\{ f \in C^m(\mathbb{R}) : |f|_{m,n} := \sup_{x \in \mathbb{R}, 0 \leq j \leq m} (1 + |x|^2)^{-n} |f^{(j)}(x)| < \infty \right\}$$

The space $\mathcal{O}_M(\mathbb{R})$ with its natural locally convex topology is:

- complete;

The space of slowly increasing smooth functions

$$\mathcal{O}_M(\mathbb{R}) = \{f \in C^\infty(\mathbb{R}) : f \cdot v \in \mathcal{S}(\mathbb{R}) \text{ for every } v \in \mathcal{S}(\mathbb{R})\}$$

$$\mathcal{O}_M(\mathbb{R}) = \bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \mathcal{O}_n^m(\mathbb{R}),$$

where

$$\mathcal{O}_n^m(\mathbb{R}) := \left\{ f \in C^m(\mathbb{R}) : |f|_{m,n} := \sup_{x \in \mathbb{R}, 0 \leq j \leq m} (1 + |x|^2)^{-n} |f^{(j)}(x)| < \infty \right\}$$

The space $\mathcal{O}_M(\mathbb{R})$ with its natural locally convex topology is:

- complete;
- non-metrizable.

The space of slowly increasing smooth functions

$$\mathcal{O}_M(\mathbb{R}) = \{f \in C^\infty(\mathbb{R}) : f \cdot v \in \mathcal{S}(\mathbb{R}) \text{ for every } v \in \mathcal{S}(\mathbb{R})\}$$

$$\mathcal{O}_M(\mathbb{R}) = \bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \mathcal{O}_n^m(\mathbb{R}),$$

where

$$\mathcal{O}_n^m(\mathbb{R}) := \left\{ f \in C^m(\mathbb{R}) : |f|_{m,n} := \sup_{x \in \mathbb{R}, 0 \leq j \leq m} (1 + |x|^2)^{-n} |f^{(j)}(x)| < \infty \right\}$$

The space $\mathcal{O}_M(\mathbb{R})$ with its natural locally convex topology is:

- complete;
- non-metrizable.

A fundamental system of seminorms:

$$p_{m,v}(f) = \sup_{x \in \mathbb{R}} \max_{0 \leq j \leq m} |v(x)f^{(j)}(x)|, \quad f \in \mathcal{O}_M(\mathbb{R}), \quad m \geq 0, \quad v \in \mathcal{S}(\mathbb{R}).$$

Theorem (Albanese, Jordá, Mele)

TFAE:

- ① We have: $\psi \in \mathcal{O}_M(\mathbb{R})$
- ② The operator $C_\psi: \mathcal{O}_M(\mathbb{R}) \rightarrow \mathcal{O}_M(\mathbb{R})$ is well-defined and continuous.

Theorem (Albanese, Jordá, Mele)

TFAE:

- ① We have: $\psi \in \mathcal{O}_M(\mathbb{R})$
- ② The operator $C_\psi: \mathcal{O}_M(\mathbb{R}) \rightarrow \mathcal{O}_M(\mathbb{R})$ is well-defined and continuous.

Albanese, Jordá, Mele:

Theorem (Albanese, Jordá, Mele)

TFAE:

- ① We have: $\psi \in \mathcal{O}_M(\mathbb{R})$
- ② The operator $C_\psi: \mathcal{O}_M(\mathbb{R}) \rightarrow \mathcal{O}_M(\mathbb{R})$ is well-defined and continuous.

Albanese, Jordá, Mele:

- Dynamical properties of C_ψ : power boundedness, mean ergodicity

Theorem (Albanese, Jordá, Mele)

TFAE:

- ① We have: $\psi \in \mathcal{O}_M(\mathbb{R})$
- ② The operator $C_\psi: \mathcal{O}_M(\mathbb{R}) \rightarrow \mathcal{O}_M(\mathbb{R})$ is well-defined and continuous.

Albanese, Jordá, Mele:

- Dynamical properties of C_ψ : power boundedness, mean ergodicity
- For $\psi(x) = x + 1$ the operator C_ψ is mixing.

Theorem (Albanese, Jordá, Mele)

TFAE:

- ① We have: $\psi \in \mathcal{O}_M(\mathbb{R})$
- ② The operator $C_\psi: \mathcal{O}_M(\mathbb{R}) \rightarrow \mathcal{O}_M(\mathbb{R})$ is well-defined and continuous.

Albanese, Jordá, Mele:

- Dynamical properties of C_ψ : power boundedness, mean ergodicity
- For $\psi(x) = x + 1$ the operator C_ψ is mixing.

Problems

Theorem (Albanese, Jordá, Mele)

TFAE:

- ① We have: $\psi \in \mathcal{O}_M(\mathbb{R})$
- ② The operator $C_\psi: \mathcal{O}_M(\mathbb{R}) \rightarrow \mathcal{O}_M(\mathbb{R})$ is well-defined and continuous.

Albanese, Jordá, Mele:

- Dynamical properties of C_ψ : power boundedness, mean ergodicity
- For $\psi(x) = x + 1$ the operator C_ψ is mixing.

Problems

- ① Characterize mixing.

Theorem (Albanese, Jordá, Mele)

TFAE:

- ① We have: $\psi \in \mathcal{O}_M(\mathbb{R})$
- ② The operator $C_\psi: \mathcal{O}_M(\mathbb{R}) \rightarrow \mathcal{O}_M(\mathbb{R})$ is well-defined and continuous.

Albanese, Jordá, Mele:

- Dynamical properties of C_ψ : power boundedness, mean ergodicity
- For $\psi(x) = x + 1$ the operator C_ψ is mixing.

Problems

- ① Characterize mixing.
- ② Does mixing imply hypercyclicity?

First observation

The space $\mathcal{O}_M(\mathbb{R})$ embeds in a continuous and dense way into $C^\infty(\mathbb{R})$, so if C_ψ is hypercyclic (mixing) on $\mathcal{O}_M(\mathbb{R})$, then it is hypercyclic (mixing) on $C^\infty(\mathbb{R})$. In particular:

First observation

The space $\mathcal{O}_M(\mathbb{R})$ embeds in a continuous and dense way into $C^\infty(\mathbb{R})$, so if C_ψ is hypercyclic (mixing) on $\mathcal{O}_M(\mathbb{R})$, then it is hypercyclic (mixing) on $C^\infty(\mathbb{R})$. In particular:

- $\psi(x) \neq x$ for $x \in \mathbb{R}$;
- $\psi'(x) \neq 0$ for $x \in \mathbb{R}$.

First observation

The space $\mathcal{O}_M(\mathbb{R})$ embeds in a continuous and dense way into $C^\infty(\mathbb{R})$, so if C_ψ is hypercyclic (mixing) on $\mathcal{O}_M(\mathbb{R})$, then it is hypercyclic (mixing) on $C^\infty(\mathbb{R})$. In particular:

- $\psi(x) \neq x$ for $x \in \mathbb{R}$;
- $\psi'(x) \neq 0$ for $x \in \mathbb{R}$.

For $\psi : \mathbb{R} \rightarrow \mathbb{R}$:

First observation

The space $\mathcal{O}_M(\mathbb{R})$ embeds in a continuous and dense way into $C^\infty(\mathbb{R})$, so if C_ψ is hypercyclic (mixing) on $\mathcal{O}_M(\mathbb{R})$, then it is hypercyclic (mixing) on $C^\infty(\mathbb{R})$. In particular:

- $\psi(x) \neq x$ for $x \in \mathbb{R}$;
- $\psi'(x) \neq 0$ for $x \in \mathbb{R}$.

For $\psi : \mathbb{R} \rightarrow \mathbb{R}$:

- $\psi_0(x) = x$;

First observation

The space $\mathcal{O}_M(\mathbb{R})$ embeds in a continuous and dense way into $C^\infty(\mathbb{R})$, so if C_ψ is hypercyclic (mixing) on $\mathcal{O}_M(\mathbb{R})$, then it is hypercyclic (mixing) on $C^\infty(\mathbb{R})$. In particular:

- $\psi(x) \neq x$ for $x \in \mathbb{R}$;
- $\psi'(x) \neq 0$ for $x \in \mathbb{R}$.

For $\psi : \mathbb{R} \rightarrow \mathbb{R}$:

- $\psi_0(x) = x$;
- for $n \in \mathbb{N}$: $\psi_n = \underbrace{\psi \circ \dots \circ \psi}_{n-times}$;

First observation

The space $\mathcal{O}_M(\mathbb{R})$ embeds in a continuous and dense way into $C^\infty(\mathbb{R})$, so if C_ψ is hypercyclic (mixing) on $\mathcal{O}_M(\mathbb{R})$, then it is hypercyclic (mixing) on $C^\infty(\mathbb{R})$. In particular:

- $\psi(x) \neq x$ for $x \in \mathbb{R}$;
- $\psi'(x) \neq 0$ for $x \in \mathbb{R}$.

For $\psi : \mathbb{R} \rightarrow \mathbb{R}$:

- $\psi_0(x) = x$;
- for $n \in \mathbb{N}$: $\psi_n = \underbrace{\psi \circ \dots \circ \psi}_{n\text{-times}}$;
- if ψ is bijective, then for $n \in \mathbb{N}$ the function ψ_{-n} is the inverse of ψ_n .

Theorem

Let $\psi \in \mathcal{O}_M(\mathbb{R})$ be bijective. If

- ① $\psi(x) \neq x$ for $x \in \mathbb{R}$,
- ② $\psi'(x) \neq 0$ for $x \in \mathbb{R}$,
- ③ $\{(\psi_n)': n \in \mathbb{Z}\}$ is bounded in $\mathcal{O}_M(\mathbb{R})$,

then $C_\psi : \mathcal{O}_M(\mathbb{R}) \rightarrow \mathcal{O}_M(\mathbb{R})$ is hypercyclic.

Theorem

Let $\psi \in \mathcal{O}_M(\mathbb{R})$ be bijective. If

- ① $\psi(x) \neq x$ for $x \in \mathbb{R}$,
- ② $\psi'(x) \neq 0$ for $x \in \mathbb{R}$,
- ③ $\{(\psi_n)': n \in \mathbb{Z}\}$ is bounded in $\mathcal{O}_M(\mathbb{R})$,

then $C_\psi : \mathcal{O}_M(\mathbb{R}) \rightarrow \mathcal{O}_M(\mathbb{R})$ is hypercyclic.

Corollary

For $\psi(x) = x + 1$ the operator $C_\psi : \mathcal{O}_M(\mathbb{R}) \rightarrow \mathcal{O}_M(\mathbb{R})$ is hypercyclic.

Theorem

Let $\psi \in \mathcal{O}_M(\mathbb{R})$ be bijective, without fixed points and with a non-vanishing derivative. TFAE:

Theorem

Let $\psi \in \mathcal{O}_M(\mathbb{R})$ be bijective, without fixed points and with a non-vanishing derivative. TFAE:

- 1 The operator $C_\psi: \mathcal{O}_M(\mathbb{R}) \rightarrow \mathcal{O}_M(\mathbb{R})$ is mixing.

Theorem

Let $\psi \in \mathcal{O}_M(\mathbb{R})$ be bijective, without fixed points and with a non-vanishing derivative. TFAE:

- 1 The operator $C_\psi: \mathcal{O}_M(\mathbb{R}) \rightarrow \mathcal{O}_M(\mathbb{R})$ is mixing.
- 2 There are $a, b \in \mathbb{R}$ such that for every $k \in \mathbb{N}$ and $v \in \mathcal{S}(\mathbb{R})$ we have

$$\lim_{n \rightarrow \infty} \sup_{x \in \psi_{-n}([\min\{a, \psi(a)\}, \max\{a, \psi(a)\}])} |v(x)(\psi_n)^{(k)}(x)| = 0$$

and

$$\lim_{n \rightarrow \infty} \sup_{x \in \psi_n([\min\{b, \psi(b)\}, \max\{b, \psi(b)\}])} |v(x)(\psi_{-n})^{(k)}(x)| = 0.$$

Theorem

Let $\psi \in \mathcal{O}_M(\mathbb{R})$ be bijective, without fixed points and with a non-vanishing derivative. TFAE:

- 1 The operator $C_\psi: \mathcal{O}_M(\mathbb{R}) \rightarrow \mathcal{O}_M(\mathbb{R})$ is mixing.
- 2 There are $a, b \in \mathbb{R}$ such that for every $k \in \mathbb{N}$ and $v \in \mathcal{S}(\mathbb{R})$ we have

$$\lim_{n \rightarrow \infty} \sup_{x \in \psi_{-n}([\min\{a, \psi(a)\}, \max\{a, \psi(a)\}])} |v(x)(\psi_n)^{(k)}(x)| = 0$$

and

$$\lim_{n \rightarrow \infty} \sup_{x \in \psi_n([\min\{b, \psi(b)\}, \max\{b, \psi(b)\}])} |v(x)(\psi_{-n})^{(k)}(x)| = 0.$$

Can we calculate this?

Examples

Let $\tilde{\psi} : [0, 1] \rightarrow \mathbb{R}$ be a smooth function such that: $\tilde{\psi}(x) = 3x + 1$ for $x \in [0, 1/7]$, $\tilde{\psi}(x) = 3x - 1$ for $x \in [6/7, 1]$, $\tilde{\psi}'(x) > 0$ for $x \in [0, 1]$. The function $\psi : \mathbb{R} \rightarrow \mathbb{R}$ defined by the formula

$$\psi(x) = \tilde{\psi}(x - n) + n \quad \text{if} \quad x \in [n, n + 1], n \in \mathbb{Z},$$

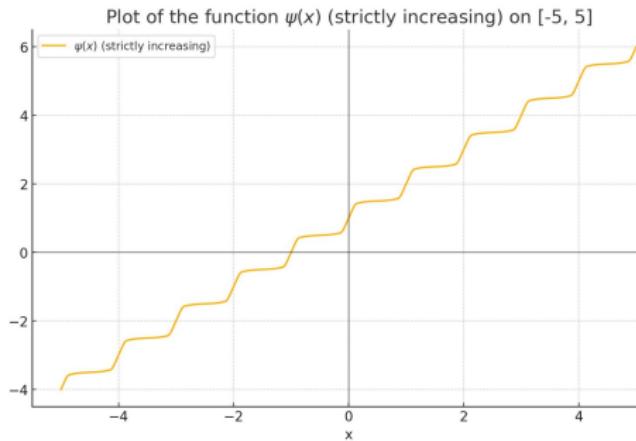
belongs to $\mathcal{O}_M(\mathbb{R})$, has no fixed points and a non-vanishing derivative.

Examples

Let $\tilde{\psi} : [0, 1] \rightarrow \mathbb{R}$ be a smooth function such that: $\tilde{\psi}(x) = 3x + 1$ for $x \in [0, 1/7]$, $\tilde{\psi}(x) = 3x - 1$ for $x \in [6/7, 1]$, $\tilde{\psi}'(x) > 0$ for $x \in [0, 1]$. The function $\psi : \mathbb{R} \rightarrow \mathbb{R}$ defined by the formula

$$\psi(x) = \tilde{\psi}(x - n) + n \quad \text{if } x \in [n, n + 1], n \in \mathbb{Z},$$

belongs to $\mathcal{O}_M(\mathbb{R})$, has no fixed points and a non-vanishing derivative.



Examples

Let $\tilde{\psi} : [0, 1] \rightarrow \mathbb{R}$ be a smooth function such that: $\tilde{\psi}(x) = 3x + 1$ for $x \in [0, 1/7]$, $\tilde{\psi}(x) = 3x - 1$ for $x \in [6/7, 1]$, $\tilde{\psi}'(x) > 0$ for $x \in [0, 1]$. The function $\psi : \mathbb{R} \rightarrow \mathbb{R}$ defined by the formula

$$\psi(x) = \tilde{\psi}(x - n) + n \quad \text{if} \quad x \in [n, n + 1], n \in \mathbb{Z},$$

belongs to $\mathcal{O}_M(\mathbb{R})$, has no fixed points and a non-vanishing derivative.

- C_ψ is not mixing on $\mathcal{O}_M(\mathbb{R})$.

Examples

Let $\tilde{\psi} : [0, 1] \rightarrow \mathbb{R}$ be a smooth function such that: $\tilde{\psi}(x) = 3x + 1$ for $x \in [0, 1/7]$, $\tilde{\psi}(x) = 3x - 1$ for $x \in [6/7, 1]$, $\tilde{\psi}'(x) > 0$ for $x \in [0, 1]$. The function $\psi : \mathbb{R} \rightarrow \mathbb{R}$ defined by the formula

$$\psi(x) = \tilde{\psi}(x - n) + n \quad \text{if} \quad x \in [n, n + 1], n \in \mathbb{Z},$$

belongs to $\mathcal{O}_M(\mathbb{R})$, has no fixed points and a non-vanishing derivative.

- C_ψ is not mixing on $\mathcal{O}_M(\mathbb{R})$.
- C_ψ is not topologically transitive on $\mathcal{O}_M(\mathbb{R})$. Hence is not hypercyclic.

Examples

Let $\tilde{\psi} : [0, 1] \rightarrow \mathbb{R}$ be a smooth function such that: $\tilde{\psi}(x) = 3x + 1$ for $x \in [0, 1/7]$, $\tilde{\psi}(x) = 3x - 1$ for $x \in [6/7, 1]$, $\tilde{\psi}'(x) > 0$ for $x \in [0, 1]$. The function $\psi : \mathbb{R} \rightarrow \mathbb{R}$ defined by the formula

$$\psi(x) = \tilde{\psi}(x - n) + n \quad \text{if} \quad x \in [n, n + 1], n \in \mathbb{Z},$$

belongs to $\mathcal{O}_M(\mathbb{R})$, has no fixed points and a non-vanishing derivative.

- C_ψ is not mixing on $\mathcal{O}_M(\mathbb{R})$.
- C_ψ is not topologically transitive on $\mathcal{O}_M(\mathbb{R})$. Hence is not hypercyclic.
- C_ψ is mixing on $C^\infty(\mathbb{R})$.

Abel's equation

Abel's equation

Given: $\psi: \mathbb{R} \rightarrow \mathbb{R}$

find: $H: \mathbb{R} \rightarrow \mathbb{R}$ with

$$H(\psi(x)) = H(x) + 1.$$

Abel's equation

Given: $\psi: \mathbb{R} \rightarrow \mathbb{R}$

find: $H: \mathbb{R} \rightarrow \mathbb{R}$ with

$$H(\psi(x)) = H(x) + 1.$$

Abel's equation is an important tool in:

Abel's equation

Given: $\psi: \mathbb{R} \rightarrow \mathbb{R}$

find: $H: \mathbb{R} \rightarrow \mathbb{R}$ with

$$H(\psi(x)) = H(x) + 1.$$

Abel's equation is an important tool in:

- finding eigenvalues and spectra of composition operators

Given: $\psi: \mathbb{R} \rightarrow \mathbb{R}$

find: $H: \mathbb{R} \rightarrow \mathbb{R}$ with

$$H(\psi(x)) = H(x) + 1.$$

Abel's equation is an important tool in:

- finding eigenvalues and spectra of composition operators
- iteration semigroups theory

Abel's equation and mixing

Let $\psi \in \mathcal{O}_M(\mathbb{R})$.

Abel's equation and mixing

Let $\psi \in \mathcal{O}_M(\mathbb{R})$. If there exists $H \in \mathcal{O}_M(\mathbb{R})$ such that $H'(x) \neq 0$ and

$$H(\psi(x)) = H(x) + 1.$$

Abel's equation and mixing

Let $\psi \in \mathcal{O}_M(\mathbb{R})$. If there exists $H \in \mathcal{O}_M(\mathbb{R})$ such that $H'(x) \neq 0$ and

$$H(\psi(x)) = H(x) + 1.$$

then the diagram

$$\begin{array}{ccc} \mathcal{O}_M(\mathbb{R}) & \xrightarrow{C_{x+1}} & \mathcal{O}_M(\mathbb{R}) \\ C_H \downarrow & & \downarrow C_H \\ \mathcal{O}_M(\mathbb{R}) & \xrightarrow{C_\psi} & \mathcal{O}_M(\mathbb{R}) \end{array}$$

commutes and C_H has dense range (H is necessarily bijective).

Abel's equation and mixing

Let $\psi \in \mathcal{O}_M(\mathbb{R})$. If there exists $H \in \mathcal{O}_M(\mathbb{R})$ such that $H'(x) \neq 0$ and

$$H(\psi(x)) = H(x) + 1.$$

then the diagram

$$\begin{array}{ccc} \mathcal{O}_M(\mathbb{R}) & \xrightarrow{C_{x+1}} & \mathcal{O}_M(\mathbb{R}) \\ C_H \downarrow & & \downarrow C_H \\ \mathcal{O}_M(\mathbb{R}) & \xrightarrow{C_\psi} & \mathcal{O}_M(\mathbb{R}) \end{array}$$

commutes and C_H has dense range (H is necessarily bijective).

Hence C_ψ is mixing and hypercyclic.

Theorem

Let $\psi \in \mathcal{O}_M(\mathbb{R})$ be bijective. TFAE:

Theorem

Let $\psi \in \mathcal{O}_M(\mathbb{R})$ be bijective. TFAE:

- 1 There exists $H \in \mathcal{O}_M(\mathbb{R})$ with a non-vanishing derivative and which satisfies the equation $H(\psi(x)) = H(x) + 1$.

Theorem

Let $\psi \in \mathcal{O}_M(\mathbb{R})$ be bijective. TFAE:

- 1 There exists $H \in \mathcal{O}_M(\mathbb{R})$ with a non-vanishing derivative and which satisfies the equation $H(\psi(x)) = H(x) + 1$.
- 2 The operator $C_\psi: \mathcal{O}_M(\mathbb{R}) \rightarrow \mathcal{O}_M(\mathbb{R})$ is mixing and

for $v \in \mathcal{S}(\mathbb{R})$: $\lim_{n \rightarrow \infty} v(\psi_n(0)) \cdot n = 0$ and $\lim_{n \rightarrow \infty} v(\psi_{-n}(0)) \cdot n = 0$.

Theorem

Let $\psi \in \mathcal{O}_M(\mathbb{R})$ be bijective. TFAE:

- 1 There exists $H \in \mathcal{O}_M(\mathbb{R})$ with a non-vanishing derivative and which satisfies the equation $H(\psi(x)) = H(x) + 1$.
- 2 The operator $C_\psi: \mathcal{O}_M(\mathbb{R}) \rightarrow \mathcal{O}_M(\mathbb{R})$ is mixing and

for $v \in \mathcal{S}(\mathbb{R})$: $\lim_{n \rightarrow \infty} v(\psi_n(0)) \cdot n = 0$ and $\lim_{n \rightarrow \infty} v(\psi_{-n}(0)) \cdot n = 0$.

Does the mixing property imply the **red condition**? If yes, then every mixing composition is hypercyclic.

Thanks for your attention!