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Smooth functions on singular sets

Frölicher space

A Frölicher space is a triple (X, CX ,FX), where X is a set, CX ⊆ XR, and

FX ⊆ RX , and the following properties are satisfied:

• f ∈ FX if and only if f ◦ c ∈ C∞(R,R) for all c ∈ CX ,

• c ∈ CX if and only if f ◦ c ∈ C∞(R,R) for all f ∈ FX .

A map φ : X → Y between Frölicher spaces is called smooth if φ∗CX ⊆ CY .

This is equivalent to φ∗FY ⊆ FX as well as FY ◦ φ ◦ CX ⊆ C∞.

Frölicher spaces form a complete, cocomplete, cartesian closed category

which contains smooth finite dimensional manifolds as a full subcategory.

Remark

There are other ways of endowing sets X with a synthetic smooth structure,

e.g., differential spaces or diffeological spaces.
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A map φ : X → Y between Frölicher spaces is called smooth if φ∗CX ⊆ CY .

This is equivalent to φ∗FY ⊆ FX as well as FY ◦ φ ◦ CX ⊆ C∞.
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Boman’s theorem

Theorem

Let U ⊆ Rn be open and f : U → R any function. Then:

• f is C∞ iff f∗C∞(R, U) ⊆ C∞(R,R). [Boman 1967]

• f is Cm,α iff f∗C∞(R, U) ⊆ Cm,α(R,R), where m ∈ N and α ∈ (0, 1].

[Boman 1967]

• f is Cm,ω iff f∗C∞(R, U) ⊆ Cm,ω(R,R), where ω is any modulus of

continuity. [Faure 1989]

• f is in the local Zygmund class Zm,1 iff f∗C∞(R, U) ⊆ Zm,1(R,R).
[R 2022]

Remark

It does not work for Cm!
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Boman’s theorem on non-open sets?

Arc-smooth functions

Let ∅ ̸= X ⊆ Rn be closed and C∞(R, X) := {c ∈ C∞(R,Rn) : c(R) ⊆ X}.

AC∞(X) :=
{
f : X → R : f∗C∞(R, X) ⊆ C∞(R,R)

}
; Frölicher space (X, C∞(R, X),AC∞(X)) generated by X ↪→ Rn

Smoothly extendable functions

C∞(X) :=
{
f : X → R : ∃F ∈ C∞(Rn), F |X = f

}
Clearly: C∞(X) ⊆ AC∞(X)

Example

Let X = {(x, y) ∈ R2 : x3 = y2} and φ : X → R, φ(x, y) = y1/3. Then

φ ∈ AC∞(X) and AC∞(X) = φ∗C∞(R), by a theorem of [Joris 1982].

Assumption

Let X be closed and fat, i.e., X = X◦.
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On Hölder sets

Theorem [R 2019]

If X ⊆ Rn is a Hölder set, then AC∞(X) = C∞(X).

Hölder sets

Let α ∈ (0, 1]. An α-set is a closed fat subset of Rn that locally has α-Hölder

boundary. A Hölder set is an α-set for some α and a Lipschitz set is a 1-set.

Examples

• Convex closed fat sets are Lipschitz sets.

• The epigraph of x 7→ dist(x,C)α, where C is the Cantor set, is an α-set.

• X = {(x, y) ∈ R2 : x ≥ 0, x3/2 ≤ y ≤ 2x3/2} is not a Hölder set.
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Hölder sets

Let α ∈ (0, 1]. An α-set is a closed fat subset of Rn that locally has α-Hölder
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AC∞(X) ̸= C∞(X) on infinitely flat cusps

Example

Let X = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, |y| ≤ p(x)}, where p : [0, 1] → [0, 1] is a

strictly increasing function satisfying p(x) ≤ x2 which vanishes to infinite

order at 0. The function

f : X → R, (x, y) 7→
√
x2 + y,

belongs to AC∞(X).

Indeed: Let x, y : R → R be C∞ functions such that (x(t), y(t)) ∈ X for all

t ∈ R. We show that there is a C∞ function z : R → R such that y = x2z.

Theorem [Joris–Preissmann 1990] If φ,ψ : R → R are such that ψ,φψ ∈ C∞

and |φ| ≤ |ψ|α for some α > 0, then φ ∈ C⌊2α⌋.

Apply this to φ = y/x2 and ψ = x2. Since |y| ≤ p(x), for each n ∈ N there is

an interval [0, εn) such that |φ| = | y
x2 | ≤ |x|2n = |ψ|n if x ∈ [0, εn).
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A set with an inward pointing ∞-flat cusp

Example

Let X = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, |y| ≤ p(x)} (as on the previous slide) and

Y := {(x, y) ∈ R2 : x ≤ 1} \X◦. Then

AC∞(Y ) = C∞
int(Y ) ̸= C∞(Y ),

where C∞
int(Y ) := {f ∈ C∞(Y ◦) : all ∂αf extend continuously to ∂Y }. Note

that Y is not Whitney p-regular for any p.

Theorem [R 2022]

Let X ⊆ Rn be a locally finite union of Hölder sets Xj such that

• if x ∈ ∂X and x ∈ Xi ∩Xj , then there exists a Hölder set Z such that

x ∈ Z ⊂ Xi ∩Xj .

Then AC∞(X) = C∞
int(X).
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Loss of regularity vs. cuspidality of X

Theorem [R 2022]

Let α, β ∈ (0, 1] and m ∈ N. For any α-set X ⊆ Rn,

ACmp(α),β(X) ⊆ C
m, αβ

2q(α)

int (X)

where p(α) :=
⌈

2
α

⌉
, q(α) :=

⌈
1
α

⌉
, and

ACm,β(X) :=
{
f : X → R : f∗C∞(R, X) ⊆ Cm,β(R,R)

}
,

Cm,β
int (X) :=

f : X → R :

f |X◦ ∈ Cm(X◦), all f (α), |α| ≤ m,

extend continuously to ∂X, and

all f (α), |α| = m, are locally β-Hölder

 .

Optimality

• Loss of derivatives: p(α) is optimal.

• Degradation of the Hölder index: optimal for 1-sets. Often the factor
α

2q(α)
can be replaced by 1

2q(α)
.
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Subanalytic sets

Subanalytic sets [ Lojasiewicz 1964], [Hironaka 1973]

Let M be a real analytic manifold. A subset X ⊆M is called semianalytic if

each x ∈M has an open neighborhood U in M such that

X ∩ U =
⋃
i

⋂
j

{fij = 0, gij > 0},

for finitely many real analytic functions fij , gij on U .

A subset X ⊆M is subanalytic if each x ∈M has an open neighborhood U

in M such that X ∩ U is the projection of a relatively compact semianalytic

subset of M ×N , where N is another real analytic manifold.

E.g. X = {(x, y) ∈ R2 : x ≥ 0, x3/2 ≤ y ≤ 2x3/2}.

Example [Osgood 1920s]

The image under R2 ∋ (x, y) 7→ (x, xy, xyey) ∈ R3 of the closed unit ball is

subanalytic but not semianalytic.
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On subanalytic sets

Theorem [R 2019]

For simple closed fat subanalytic X ⊆ Rn, we have AC∞(X) = C∞(X).

Assumption

We say that X is simple if each x ∈ X has a basis of

neighborhoods U such that U ∩X◦ is connected.

Theorem [Paw lucki–Pleśniak 1986]

Compact fat subanalytic sets are UPC.

UPC sets

A closed set X ⊆ Rn is called UPC if there are

M > 0 and m,N ∈ N≥1 such that for all x ∈ X there

is a polynomial curve hx : R → Rn of degree ≤ N s.t.

 

ÉÉÉÉÉ

ÉsetsÉ ÉÉset

notsimple

 

ÉÉÉÉ

Éset IIset
YH

notsimple• hx((0, 1]) ⊆ X◦ and hx(0) = x,

• dist(hx(t),Rn \X) ≥Mtm for all x ∈ X and t ∈ [0, 1].
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Loss of derivatives

UPC-index

We call α := 1
m

a UPC-index of X; it measures cuspidality.

Theorem [R 2022]

Let X ⊆ Rn be a simple compact fat subanalytic set and α a UPC-index of

X. Let m ∈ N≥1 and β ∈ (0, 1]. Then there exists ℓ ∈ N≥1 such that

ACmp(α),β(X) ⊆ Cm−1, 1
ℓ

int (X),

where p(α) :=
⌈

2
α

⌉
.

Beyond subanalytic?

X = {(x, y) ∈ R2 : x ≥ 0, x
√

2 ≤ y ≤ x
√
2 + x2} is

not UPC.

Is it true that AC∞(X) ⊆ C∞(X)?

11



Loss of derivatives

UPC-index

We call α := 1
m

a UPC-index of X; it measures cuspidality.

Theorem [R 2022]

Let X ⊆ Rn be a simple compact fat subanalytic set and α a UPC-index of

X. Let m ∈ N≥1 and β ∈ (0, 1]. Then there exists ℓ ∈ N≥1 such that

ACmp(α),β(X) ⊆ Cm−1, 1
ℓ

int (X),

where p(α) :=
⌈

2
α

⌉
.

Beyond subanalytic?

X = {(x, y) ∈ R2 : x ≥ 0, x
√

2 ≤ y ≤ x
√
2 + x2} is

not UPC.

Is it true that AC∞(X) ⊆ C∞(X)?

11



Loss of derivatives

UPC-index

We call α := 1
m

a UPC-index of X; it measures cuspidality.

Theorem [R 2022]

Let X ⊆ Rn be a simple compact fat subanalytic set and α a UPC-index of

X. Let m ∈ N≥1 and β ∈ (0, 1]. Then there exists ℓ ∈ N≥1 such that

ACmp(α),β(X) ⊆ Cm−1, 1
ℓ

int (X),

where p(α) :=
⌈

2
α

⌉
.

Beyond subanalytic?

X = {(x, y) ∈ R2 : x ≥ 0, x
√
2 ≤ y ≤ x

√
2 + x2} is

not UPC.

Is it true that AC∞(X) ⊆ C∞(X)?

11



Real analytic functions

Theorem [Bochnak–Siciak 1970-71]

Let U ⊆ Rn be open and f : U → R. Then:

• f ∈ Cω(U) iff f ∈ C∞(U) and f |ℓ is real analytic for each affine line ℓ.

• f ∈ Cω(U) iff f |π is real analytic for each affine 2-plane π.

Theorem [Bochnak–Kollár-Kucharz 2020]

Let M be a real analytic manifold of dimension n ≥ 3. Then f :M → R is

real analytic iff f |N is real analytic for each real analytic submanifold N ⊆M

homeomorphic to S2.
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Real analytic functions on closed sets

Theorem [R 2019], [R 2024]

Let X ⊆ Rn be a Hölder set or a simple closed fat subanalytic set.

• f ∈ Cω(X), i.e., f extends to a real analytic function on an open

neighborhood of X, iff f ∈ C∞(X) and f ◦ c ∈ Cω for each germ

c : (R, 0) → X of a polynomial curve.

Without presupposing smoothness:

• In dimension 2, f ∈ Cω(X) iff f ◦ p ∈ Cω for each germ p : (R2, 0) → X

of a polynomial map.

• If X is a Lipschitz set, f ∈ Cω(X) iff f ◦ p ∈ Cω for each germ

p : (R2, 0) → X of a polynomial map of degree ≤ 2.

This is wrong for X = {(x, y) ∈ R2 : x ∈ [0, 1], x
√

2 ≤ y ≤ x
√
2 + x2}.

Quantitative versions

The cuspidality of X determines the maximal degree of the polynomial maps

needed for testing real analyticity (in first item: d = 2min(m,N) max{m,N}).
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Let X ⊆ Rn be a Hölder set or a simple closed fat subanalytic set.

• f ∈ Cω(X), i.e., f extends to a real analytic function on an open

neighborhood of X, iff f ∈ C∞(X) and f ◦ c ∈ Cω for each germ

c : (R, 0) → X of a polynomial curve.

Without presupposing smoothness:

• In dimension 2, f ∈ Cω(X) iff f ◦ p ∈ Cω for each germ p : (R2, 0) → X

of a polynomial map.

• If X is a Lipschitz set, f ∈ Cω(X) iff f ◦ p ∈ Cω for each germ

p : (R2, 0) → X of a polynomial map of degree ≤ 2.

This is wrong for X = {(x, y) ∈ R2 : x ∈ [0, 1], x
√

2 ≤ y ≤ x
√
2 + x2}.

Quantitative versions

The cuspidality of X determines the maximal degree of the polynomial maps

needed for testing real analyticity (in first item: d = 2min(m,N) max{m,N}).

13



Real analytic functions on closed sets

Theorem [R 2019], [R 2024]
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Ultradifferentiable functions

Theorem [Kriegl–Michor–R 2009]

Let U ⊆ Rn be open and f : U → R. Let E{∗} be a non-quasianalytic

ultradifferentiable class of Roumieu type that is stable under composition.

Then f ∈ E{∗}(U) iff f∗E{∗}(R, U) ⊆ E{∗}(R,R).

This is not true in the quasianalytic setting. [Jaffe 2016], [R 2019]

Theorem [R 2025]

Let X ⊆ Rn be a simple closed fat subanalytic set. Let ω be a

non-quasianalytic concave weight function satisfying

ω(t2) = O(ω(t)) as t→ ∞,

e.g., ωs(t) = ((log t)+)
s for s > 1. Then

AE{ω}(X) := {f : X → R : f∗E{ω}(R, X) ⊆ E{ω}(R,R)}

=
{
f ∈ C∞(X) : ∀K ⊆ X ∃ρ > 0 sup

α∈Nn

∥∂αf∥K

e
−φ∗(ρ|α|)

ρ

<∞
}

=: E{ω}(X).
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Spaces of arc-smooth functions

Theorem [R 2025]

• Let X ⊆ Rn be a simple closed fat subanalytic set. The identities

AC∞(X) = C∞(X), ACω(X) = Cω(X), AE{ω}(X) = E{ω}(X),

are bornological isomorphisms w.r.t. their natural locally convex topologies.

• They can be lifted to maps with values in a convenient vector space E:

AC∞(X,E) ∼= C∞(X,E),

ACω(X,E) ∼= Cω(X,E),

AE{ω}(X,E) ∼= E{ω}(X,E).

• These spaces are convenient and respective exponential laws hold:

AC∞(X1,AC∞(X2, E)) ∼= AC∞(X1 ×X2, E),

C∞(X1, C∞(X2, E)) ∼= C∞(X1 ×X2, E), etc.

where Xi ⊆ Rni are simple closed fat subanalytic sets.
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Proof ingredients

On Hölder sets

• Uniform cusp property

• Curve lemmas

On subanalytic sets

• UPC and the result on Hölder sets

•  Lojasiewicz inequality

• L-regular decomposition

• Rectilinearization: If X ⊆ Rn is compact subanalytic, then there exist
finitely many real analytic maps φi : Rn → Rn such that

• there are compact Yi ⊆ Rn, such that
⋃

i φi(Yi) is a neighborhood of X,

• for each i, φ−1
i (X) is a union of quadrants.

• Uniformization: If X ⊆ Rn is closed subanalytic, then X = φ(N) for a

proper real analytic map φ : N → Rn on a real analytic manifold N .
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Happy Birthday!
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