

Smooth extension from closed sets via curve-based criteria

Armin Rainer

*International Workshop on Functional Analysis
on the Occasion of the 70th Birthday of José Bonet*

Valencia, June 18, 2025

TU Wien

Austrian Science Fund (FWF) DOI 10.55776/PAT1381823.

TECHNISCHE
UNIVERSITÄT
WIEN

Der Wissenschaftsfonds.

Frölicher space

A **Frölicher space** is a triple $(X, \mathcal{C}_X, \mathcal{F}_X)$, where X is a set, $\mathcal{C}_X \subseteq X^{\mathbb{R}}$, and $\mathcal{F}_X \subseteq \mathbb{R}^X$, and the following properties are satisfied:

- $f \in \mathcal{F}_X$ if and only if $f \circ c \in \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})$ for all $c \in \mathcal{C}_X$,
- $c \in \mathcal{C}_X$ if and only if $f \circ c \in \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})$ for all $f \in \mathcal{F}_X$.

Frölicher space

A **Frölicher space** is a triple $(X, \mathcal{C}_X, \mathcal{F}_X)$, where X is a set, $\mathcal{C}_X \subseteq X^{\mathbb{R}}$, and $\mathcal{F}_X \subseteq \mathbb{R}^X$, and the following properties are satisfied:

- $f \in \mathcal{F}_X$ if and only if $f \circ c \in \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})$ for all $c \in \mathcal{C}_X$,
- $c \in \mathcal{C}_X$ if and only if $f \circ c \in \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})$ for all $f \in \mathcal{F}_X$.

A map $\varphi : X \rightarrow Y$ between Frölicher spaces is called **smooth** if $\varphi_* \mathcal{C}_X \subseteq \mathcal{C}_Y$. This is equivalent to $\varphi^* \mathcal{F}_Y \subseteq \mathcal{F}_X$ as well as $\mathcal{F}_Y \circ \varphi \circ \mathcal{C}_X \subseteq \mathcal{C}^\infty$.

Frölicher space

A **Frölicher space** is a triple $(X, \mathcal{C}_X, \mathcal{F}_X)$, where X is a set, $\mathcal{C}_X \subseteq X^{\mathbb{R}}$, and $\mathcal{F}_X \subseteq \mathbb{R}^X$, and the following properties are satisfied:

- $f \in \mathcal{F}_X$ if and only if $f \circ c \in \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})$ for all $c \in \mathcal{C}_X$,
- $c \in \mathcal{C}_X$ if and only if $f \circ c \in \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})$ for all $f \in \mathcal{F}_X$.

A map $\varphi : X \rightarrow Y$ between Frölicher spaces is called **smooth** if $\varphi_* \mathcal{C}_X \subseteq \mathcal{C}_Y$. This is equivalent to $\varphi^* \mathcal{F}_Y \subseteq \mathcal{F}_X$ as well as $\mathcal{F}_Y \circ \varphi \circ \mathcal{C}_X \subseteq \mathcal{C}^\infty$.

Frölicher spaces form a complete, cocomplete, cartesian closed category which contains smooth finite dimensional manifolds as a full subcategory.

Frölicher space

A **Frölicher space** is a triple $(X, \mathcal{C}_X, \mathcal{F}_X)$, where X is a set, $\mathcal{C}_X \subseteq X^{\mathbb{R}}$, and $\mathcal{F}_X \subseteq \mathbb{R}^X$, and the following properties are satisfied:

- $f \in \mathcal{F}_X$ if and only if $f \circ c \in \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})$ for all $c \in \mathcal{C}_X$,
- $c \in \mathcal{C}_X$ if and only if $f \circ c \in \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})$ for all $f \in \mathcal{F}_X$.

A map $\varphi : X \rightarrow Y$ between Frölicher spaces is called **smooth** if $\varphi_* \mathcal{C}_X \subseteq \mathcal{C}_Y$. This is equivalent to $\varphi^* \mathcal{F}_Y \subseteq \mathcal{F}_X$ as well as $\mathcal{F}_Y \circ \varphi \circ \mathcal{C}_X \subseteq \mathcal{C}^\infty$.

Frölicher spaces form a complete, cocomplete, cartesian closed category which contains smooth finite dimensional manifolds as a full subcategory.

Remark

There are other ways of endowing sets X with a synthetic smooth structure, e.g., differential spaces or diffeological spaces.

Theorem

Let $U \subseteq \mathbb{R}^n$ be open and $f : U \rightarrow \mathbb{R}$ any function. Then:

- f is \mathcal{C}^∞ iff $f_*\mathcal{C}^\infty(\mathbb{R}, U) \subseteq \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})$. [Boman 1967]

Theorem

Let $U \subseteq \mathbb{R}^n$ be open and $f : U \rightarrow \mathbb{R}$ any function. Then:

- f is \mathcal{C}^∞ iff $f_*\mathcal{C}^\infty(\mathbb{R}, U) \subseteq \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})$. [Boman 1967]
- f is $\mathcal{C}^{m,\alpha}$ iff $f_*\mathcal{C}^\infty(\mathbb{R}, U) \subseteq \mathcal{C}^{m,\alpha}(\mathbb{R}, \mathbb{R})$, where $m \in \mathbb{N}$ and $\alpha \in (0, 1]$.
[Boman 1967]

Theorem

Let $U \subseteq \mathbb{R}^n$ be open and $f : U \rightarrow \mathbb{R}$ any function. Then:

- f is \mathcal{C}^∞ iff $f_*\mathcal{C}^\infty(\mathbb{R}, U) \subseteq \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})$. [Boman 1967]
- f is $\mathcal{C}^{m,\alpha}$ iff $f_*\mathcal{C}^\infty(\mathbb{R}, U) \subseteq \mathcal{C}^{m,\alpha}(\mathbb{R}, \mathbb{R})$, where $m \in \mathbb{N}$ and $\alpha \in (0, 1]$.
[Boman 1967]
- f is $\mathcal{C}^{m,\omega}$ iff $f_*\mathcal{C}^\infty(\mathbb{R}, U) \subseteq \mathcal{C}^{m,\omega}(\mathbb{R}, \mathbb{R})$, where ω is any modulus of continuity. [Faure 1989]

Theorem

Let $U \subseteq \mathbb{R}^n$ be open and $f : U \rightarrow \mathbb{R}$ any function. Then:

- f is \mathcal{C}^∞ iff $f_*\mathcal{C}^\infty(\mathbb{R}, U) \subseteq \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})$. [Boman 1967]
- f is $\mathcal{C}^{m,\alpha}$ iff $f_*\mathcal{C}^\infty(\mathbb{R}, U) \subseteq \mathcal{C}^{m,\alpha}(\mathbb{R}, \mathbb{R})$, where $m \in \mathbb{N}$ and $\alpha \in (0, 1]$. [Boman 1967]
- f is $\mathcal{C}^{m,\omega}$ iff $f_*\mathcal{C}^\infty(\mathbb{R}, U) \subseteq \mathcal{C}^{m,\omega}(\mathbb{R}, \mathbb{R})$, where ω is any modulus of continuity. [Faure 1989]
- f is in the local Zygmund class $\mathcal{Z}^{m,1}$ iff $f_*\mathcal{C}^\infty(\mathbb{R}, U) \subseteq \mathcal{Z}^{m,1}(\mathbb{R}, \mathbb{R})$. [R 2022]

Theorem

Let $U \subseteq \mathbb{R}^n$ be open and $f : U \rightarrow \mathbb{R}$ any function. Then:

- f is \mathcal{C}^∞ iff $f_*\mathcal{C}^\infty(\mathbb{R}, U) \subseteq \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})$. [Boman 1967]
- f is $\mathcal{C}^{m,\alpha}$ iff $f_*\mathcal{C}^\infty(\mathbb{R}, U) \subseteq \mathcal{C}^{m,\alpha}(\mathbb{R}, \mathbb{R})$, where $m \in \mathbb{N}$ and $\alpha \in (0, 1]$. [Boman 1967]
- f is $\mathcal{C}^{m,\omega}$ iff $f_*\mathcal{C}^\infty(\mathbb{R}, U) \subseteq \mathcal{C}^{m,\omega}(\mathbb{R}, \mathbb{R})$, where ω is any modulus of continuity. [Faure 1989]
- f is in the local Zygmund class $\mathcal{Z}^{m,1}$ iff $f_*\mathcal{C}^\infty(\mathbb{R}, U) \subseteq \mathcal{Z}^{m,1}(\mathbb{R}, \mathbb{R})$. [R 2022]

Remark

It does not work for \mathcal{C}^m !

Arc-smooth functions

Let $\emptyset \neq X \subseteq \mathbb{R}^n$ be **closed** and $\mathcal{C}^\infty(\mathbb{R}, X) := \{c \in \mathcal{C}^\infty(\mathbb{R}, \mathbb{R}^n) : c(\mathbb{R}) \subseteq X\}$.

$$\mathcal{AC}^\infty(X) := \{f : X \rightarrow \mathbb{R} : f_* \mathcal{C}^\infty(\mathbb{R}, X) \subseteq \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})\}$$

\rightsquigarrow Frölicher space $(X, \mathcal{C}^\infty(\mathbb{R}, X), \mathcal{AC}^\infty(X))$ generated by $X \hookrightarrow \mathbb{R}^n$

Arc-smooth functions

Let $\emptyset \neq X \subseteq \mathbb{R}^n$ be **closed** and $\mathcal{C}^\infty(\mathbb{R}, X) := \{c \in \mathcal{C}^\infty(\mathbb{R}, \mathbb{R}^n) : c(\mathbb{R}) \subseteq X\}$.

$$\mathcal{AC}^\infty(X) := \{f : X \rightarrow \mathbb{R} : f_* \mathcal{C}^\infty(\mathbb{R}, X) \subseteq \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})\}$$

\rightsquigarrow Frölicher space $(X, \mathcal{C}^\infty(\mathbb{R}, X), \mathcal{AC}^\infty(X))$ generated by $X \hookrightarrow \mathbb{R}^n$

Smoothly extendable functions

$$\mathcal{C}^\infty(X) := \{f : X \rightarrow \mathbb{R} : \exists F \in \mathcal{C}^\infty(\mathbb{R}^n), F|_X = f\}$$

Clearly: $\mathcal{C}^\infty(X) \subseteq \mathcal{AC}^\infty(X)$

Arc-smooth functions

Let $\emptyset \neq X \subseteq \mathbb{R}^n$ be **closed** and $\mathcal{C}^\infty(\mathbb{R}, X) := \{c \in \mathcal{C}^\infty(\mathbb{R}, \mathbb{R}^n) : c(\mathbb{R}) \subseteq X\}$.

$$\mathcal{AC}^\infty(X) := \{f : X \rightarrow \mathbb{R} : f_* \mathcal{C}^\infty(\mathbb{R}, X) \subseteq \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})\}$$

\rightsquigarrow Frölicher space $(X, \mathcal{C}^\infty(\mathbb{R}, X), \mathcal{AC}^\infty(X))$ generated by $X \hookrightarrow \mathbb{R}^n$

Smoothly extendable functions

$$\mathcal{C}^\infty(X) := \{f : X \rightarrow \mathbb{R} : \exists F \in \mathcal{C}^\infty(\mathbb{R}^n), F|_X = f\}$$

Clearly: $\mathcal{C}^\infty(X) \subseteq \mathcal{AC}^\infty(X)$

Example

Let $X = \{(x, y) \in \mathbb{R}^2 : x^3 = y^2\}$ and $\varphi : X \rightarrow \mathbb{R}$, $\varphi(x, y) = y^{1/3}$. Then $\varphi \in \mathcal{AC}^\infty(X)$ and $\mathcal{AC}^\infty(X) = \varphi^* \mathcal{C}^\infty(\mathbb{R})$, by a theorem of [Joris 1982].

Arc-smooth functions

Let $\emptyset \neq X \subseteq \mathbb{R}^n$ be **closed** and $\mathcal{C}^\infty(\mathbb{R}, X) := \{c \in \mathcal{C}^\infty(\mathbb{R}, \mathbb{R}^n) : c(\mathbb{R}) \subseteq X\}$.

$$\mathcal{AC}^\infty(X) := \{f : X \rightarrow \mathbb{R} : f_* \mathcal{C}^\infty(\mathbb{R}, X) \subseteq \mathcal{C}^\infty(\mathbb{R}, \mathbb{R})\}$$

\rightsquigarrow Frölicher space $(X, \mathcal{C}^\infty(\mathbb{R}, X), \mathcal{AC}^\infty(X))$ generated by $X \hookrightarrow \mathbb{R}^n$

Smoothly extendable functions

$$\mathcal{C}^\infty(X) := \{f : X \rightarrow \mathbb{R} : \exists F \in \mathcal{C}^\infty(\mathbb{R}^n), F|_X = f\}$$

Clearly: $\mathcal{C}^\infty(X) \subseteq \mathcal{AC}^\infty(X)$

Example

Let $X = \{(x, y) \in \mathbb{R}^2 : x^3 = y^2\}$ and $\varphi : X \rightarrow \mathbb{R}$, $\varphi(x, y) = y^{1/3}$. Then $\varphi \in \mathcal{AC}^\infty(X)$ and $\mathcal{AC}^\infty(X) = \varphi^* \mathcal{C}^\infty(\mathbb{R})$, by a theorem of [Joris 1982].

Assumption

Let X be closed and **fat**, i.e., $X = \overline{X^\circ}$.

Theorem [R 2019]

If $X \subseteq \mathbb{R}^n$ is a Hölder set, then $\mathcal{AC}^\infty(X) = \mathcal{C}^\infty(X)$.

Theorem [R 2019]

If $X \subseteq \mathbb{R}^n$ is a Hölder set, then $\mathcal{AC}^\infty(X) = \mathcal{C}^\infty(X)$.

Hölder sets

Let $\alpha \in (0, 1]$. An α -set is a closed fat subset of \mathbb{R}^n that locally has α -Hölder boundary. A Hölder set is an α -set for some α and a Lipschitz set is a 1-set.

Theorem [R 2019]

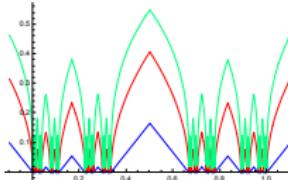
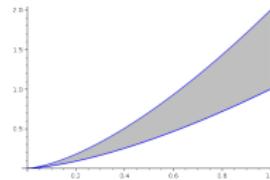
If $X \subseteq \mathbb{R}^n$ is a Hölder set, then $\mathcal{AC}^\infty(X) = \mathcal{C}^\infty(X)$.

Hölder sets

Let $\alpha \in (0, 1]$. An α -set is a closed fat subset of \mathbb{R}^n that locally has α -Hölder boundary. A Hölder set is an α -set for some α and a Lipschitz set is a 1-set.

Examples

- Convex closed fat sets are Lipschitz sets.
- The epigraph of $x \mapsto \text{dist}(x, C)^\alpha$, where C is the Cantor set, is an α -set.
- $X = \{(x, y) \in \mathbb{R}^2 : x \geq 0, x^{3/2} \leq y \leq 2x^{3/2}\}$ is not a Hölder set.



Example

Let $X = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, |y| \leq p(x)\}$, where $p : [0, 1] \rightarrow [0, 1]$ is a strictly increasing function satisfying $p(x) \leq x^2$ which vanishes to infinite order at 0. The function

$$f : X \rightarrow \mathbb{R}, \quad (x, y) \mapsto \sqrt{x^2 + y},$$

belongs to $\mathcal{AC}^\infty(X)$.

Example

Let $X = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, |y| \leq p(x)\}$, where $p : [0, 1] \rightarrow [0, 1]$ is a strictly increasing function satisfying $p(x) \leq x^2$ which vanishes to infinite order at 0. The function

$$f : X \rightarrow \mathbb{R}, \quad (x, y) \mapsto \sqrt{x^2 + y},$$

belongs to $\mathcal{AC}^\infty(X)$.

Indeed: Let $x, y : \mathbb{R} \rightarrow \mathbb{R}$ be \mathcal{C}^∞ functions such that $(x(t), y(t)) \in X$ for all $t \in \mathbb{R}$. We show that there is a \mathcal{C}^∞ function $z : \mathbb{R} \rightarrow \mathbb{R}$ such that $y = x^2 z$.

Theorem [Joris–Preissmann 1990] If $\varphi, \psi : \mathbb{R} \rightarrow \mathbb{R}$ are such that $\psi, \varphi\psi \in \mathcal{C}^\infty$ and $|\varphi| \leq |\psi|^\alpha$ for some $\alpha > 0$, then $\varphi \in \mathcal{C}^{\lfloor 2\alpha \rfloor}$.

Apply this to $\varphi = y/x^2$ and $\psi = x^2$. Since $|y| \leq p(x)$, for each $n \in \mathbb{N}$ there is an interval $[0, \varepsilon_n)$ such that $|\varphi| = |\frac{y}{x^2}| \leq |x|^{2n} = |\psi|^n$ if $x \in [0, \varepsilon_n)$.

A set with an inward pointing ∞ -flat cusp

Example

Let $X = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, |y| \leq p(x)\}$ (as on the previous slide) and $Y := \{(x, y) \in \mathbb{R}^2 : x \leq 1\} \setminus X^\circ$. Then

$$\mathcal{AC}^\infty(Y) = \mathcal{C}_{\text{int}}^\infty(Y) \neq \mathcal{C}^\infty(Y),$$

where $\mathcal{C}_{\text{int}}^\infty(Y) := \{f \in \mathcal{C}^\infty(Y^\circ) : \text{all } \partial^\alpha f \text{ extend continuously to } \partial Y\}$. Note that Y is not Whitney p -regular for any p .

Example

Let $X = \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, |y| \leq p(x)\}$ (as on the previous slide) and $Y := \{(x, y) \in \mathbb{R}^2 : x \leq 1\} \setminus X^\circ$. Then

$$\mathcal{AC}^\infty(Y) = \mathcal{C}_{\text{int}}^\infty(Y) \neq \mathcal{C}^\infty(Y),$$

where $\mathcal{C}_{\text{int}}^\infty(Y) := \{f \in \mathcal{C}^\infty(Y^\circ) : \text{all } \partial^\alpha f \text{ extend continuously to } \partial Y\}$. Note that Y is not Whitney p -regular for any p .

Theorem [R 2022]

Let $X \subseteq \mathbb{R}^n$ be a locally finite union of Hölder sets X_j such that

- if $x \in \partial X$ and $x \in X_i \cap X_j$, then there exists a Hölder set Z such that $x \in Z \subset X_i \cap X_j$.

Then $\mathcal{AC}^\infty(X) = \mathcal{C}_{\text{int}}^\infty(X)$.

Theorem [R 2022]

Let $\alpha, \beta \in (0, 1]$ and $m \in \mathbb{N}$. For any α -set $X \subseteq \mathbb{R}^n$,

$$\mathcal{AC}^{mp(\alpha), \beta}(X) \subseteq \mathcal{C}_{\text{int}}^{m, \frac{\alpha\beta}{2q(\alpha)}}(X)$$

where $p(\alpha) := \lceil \frac{2}{\alpha} \rceil$, $q(\alpha) := \lceil \frac{1}{\alpha} \rceil$, and

$$\mathcal{AC}^{m, \beta}(X) := \{f : X \rightarrow \mathbb{R} : f_* \mathcal{C}^\infty(\mathbb{R}, X) \subseteq \mathcal{C}^{m, \beta}(\mathbb{R}, \mathbb{R})\},$$

$$\mathcal{C}_{\text{int}}^{m, \beta}(X) := \left\{ f : X \rightarrow \mathbb{R} : \begin{array}{l} f|_{X^\circ} \in \mathcal{C}^m(X^\circ), \text{ all } f^{(\alpha)}, |\alpha| \leq m, \\ \text{extend continuously to } \partial X, \text{ and} \\ \text{all } f^{(\alpha)}, |\alpha| = m, \text{ are locally } \beta\text{-H\"older} \end{array} \right\}.$$

Theorem [R 2022]

Let $\alpha, \beta \in (0, 1]$ and $m \in \mathbb{N}$. For any α -set $X \subseteq \mathbb{R}^n$,

$$\mathcal{AC}^{mp(\alpha), \beta}(X) \subseteq \mathcal{C}_{\text{int}}^{m, \frac{\alpha\beta}{2q(\alpha)}}(X)$$

where $p(\alpha) := \lceil \frac{2}{\alpha} \rceil$, $q(\alpha) := \lceil \frac{1}{\alpha} \rceil$, and

$$\mathcal{AC}^{m, \beta}(X) := \{f : X \rightarrow \mathbb{R} : f_* \mathcal{C}^\infty(\mathbb{R}, X) \subseteq \mathcal{C}^{m, \beta}(\mathbb{R}, \mathbb{R})\},$$

$$\mathcal{C}_{\text{int}}^{m, \beta}(X) := \left\{ f : X \rightarrow \mathbb{R} : \begin{array}{l} f|_{X^\circ} \in \mathcal{C}^m(X^\circ), \text{ all } f^{(\alpha)}, |\alpha| \leq m, \\ \text{extend continuously to } \partial X, \text{ and} \\ \text{all } f^{(\alpha)}, |\alpha| = m, \text{ are locally } \beta\text{-H\"older} \end{array} \right\}.$$

Optimality

- **Loss of derivatives:** $p(\alpha)$ is optimal.
- **Degradation of the Hölder index:** optimal for 1-sets. Often the factor $\frac{\alpha}{2q(\alpha)}$ can be replaced by $\frac{1}{2q(\alpha)}$.

Subanalytic sets [[Łojasiewicz 1964](#)], [[Hironaka 1973](#)]

Let M be a real analytic manifold. A subset $X \subseteq M$ is called [semianalytic](#) if each $x \in M$ has an open neighborhood U in M such that

$$X \cap U = \bigcup_i \bigcap_j \{f_{ij} = 0, g_{ij} > 0\},$$

for finitely many real analytic functions f_{ij}, g_{ij} on U .

Subanalytic sets [Łojasiewicz 1964], [Hironaka 1973]

Let M be a real analytic manifold. A subset $X \subseteq M$ is called **semianalytic** if each $x \in M$ has an open neighborhood U in M such that

$$X \cap U = \bigcup_i \bigcap_j \{f_{ij} = 0, g_{ij} > 0\},$$

for finitely many real analytic functions f_{ij}, g_{ij} on U .

A subset $X \subseteq M$ is **subanalytic** if each $x \in M$ has an open neighborhood U in M such that $X \cap U$ is the projection of a relatively compact semianalytic subset of $M \times N$, where N is another real analytic manifold.

E.g. $X = \{(x, y) \in \mathbb{R}^2 : x \geq 0, x^{3/2} \leq y \leq 2x^{3/2}\}$.

Subanalytic sets [Łojasiewicz 1964], [Hironaka 1973]

Let M be a real analytic manifold. A subset $X \subseteq M$ is called **semianalytic** if each $x \in M$ has an open neighborhood U in M such that

$$X \cap U = \bigcup_i \bigcap_j \{f_{ij} = 0, g_{ij} > 0\},$$

for finitely many real analytic functions f_{ij}, g_{ij} on U .

A subset $X \subseteq M$ is **subanalytic** if each $x \in M$ has an open neighborhood U in M such that $X \cap U$ is the projection of a relatively compact semianalytic subset of $M \times N$, where N is another real analytic manifold.

E.g. $X = \{(x, y) \in \mathbb{R}^2 : x \geq 0, x^{3/2} \leq y \leq 2x^{3/2}\}$.

Example [Osgood 1920s]

The image under $\mathbb{R}^2 \ni (x, y) \mapsto (x, xy, xye^y) \in \mathbb{R}^3$ of the closed unit ball is subanalytic but not semianalytic.

Theorem [R 2019]

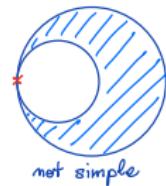
For simple closed fat subanalytic $X \subseteq \mathbb{R}^n$, we have $\mathcal{AC}^\infty(X) = \mathcal{C}^\infty(X)$.

Theorem [R 2019]

For simple closed fat subanalytic $X \subseteq \mathbb{R}^n$, we have $\mathcal{AC}^\infty(X) = \mathcal{C}^\infty(X)$.

Assumption

We say that X is **simple** if each $x \in X$ has a basis of neighborhoods U such that $U \cap X^\circ$ is connected.

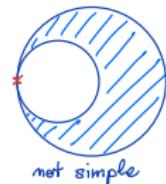


Theorem [R 2019]

For simple closed fat subanalytic $X \subseteq \mathbb{R}^n$, we have $\mathcal{AC}^\infty(X) = \mathcal{C}^\infty(X)$.

Assumption

We say that X is **simple** if each $x \in X$ has a basis of neighborhoods U such that $U \cap X^\circ$ is connected.

**Theorem [Pawlucki–Pleśniak 1986]**

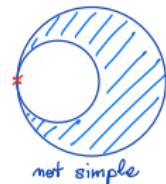
Compact fat subanalytic sets are UPC.

Theorem [R 2019]

For simple closed fat subanalytic $X \subseteq \mathbb{R}^n$, we have $\mathcal{AC}^\infty(X) = \mathcal{C}^\infty(X)$.

Assumption

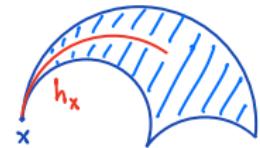
We say that X is **simple** if each $x \in X$ has a basis of neighborhoods U such that $U \cap X^\circ$ is connected.

**Theorem** [Pawlucki–Pleśniak 1986]

Compact fat subanalytic sets are UPC.

UPC sets

A closed set $X \subseteq \mathbb{R}^n$ is called **UPC** if there are $M > 0$ and $m, N \in \mathbb{N}_{\geq 1}$ such that for all $x \in X$ there is a polynomial curve $h_x : \mathbb{R} \rightarrow \mathbb{R}^n$ of degree $\leq N$ s.t.



- $h_x((0, 1]) \subseteq X^\circ$ and $h_x(0) = x$,
- $\text{dist}(h_x(t), \mathbb{R}^n \setminus X) \geq Mt^m$ for all $x \in X$ and $t \in [0, 1]$.

UPC-index

We call $\alpha := \frac{1}{m}$ a **UPC-index** of X ; it measures cuspidality.

UPC-index

We call $\alpha := \frac{1}{m}$ a **UPC-index** of X ; it measures cuspidality.

Theorem [R 2022]

Let $X \subseteq \mathbb{R}^n$ be a simple compact fat subanalytic set and α a UPC-index of X . Let $m \in \mathbb{N}_{\geq 1}$ and $\beta \in (0, 1]$. Then there exists $\ell \in \mathbb{N}_{\geq 1}$ such that

$$\mathcal{AC}^{mp(\alpha), \beta}(X) \subseteq \mathcal{C}_{\text{int}}^{m-1, \frac{1}{\ell}}(X),$$

where $p(\alpha) := \lceil \frac{2}{\alpha} \rceil$.

UPC-index

We call $\alpha := \frac{1}{m}$ a **UPC-index** of X ; it measures cuspidality.

Theorem [R 2022]

Let $X \subseteq \mathbb{R}^n$ be a simple compact fat subanalytic set and α a UPC-index of X . Let $m \in \mathbb{N}_{\geq 1}$ and $\beta \in (0, 1]$. Then there exists $\ell \in \mathbb{N}_{\geq 1}$ such that

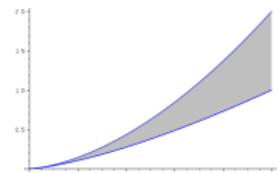
$$\mathcal{AC}^{mp(\alpha), \beta}(X) \subseteq \mathcal{C}_{\text{int}}^{m-1, \frac{1}{\ell}}(X),$$

where $p(\alpha) := \lceil \frac{2}{\alpha} \rceil$.

Beyond subanalytic?

$X = \{(x, y) \in \mathbb{R}^2 : x \geq 0, x^{\sqrt{2}} \leq y \leq x^{\sqrt{2}} + x^2\}$ is not UPC.

Is it true that $\mathcal{AC}^\infty(X) \subseteq \mathcal{C}^\infty(X)$?



Theorem [Bochnak–Siciak 1970-71]

Let $U \subseteq \mathbb{R}^n$ be open and $f : U \rightarrow \mathbb{R}$. Then:

- $f \in \mathcal{C}^\omega(U)$ iff $f \in \mathcal{C}^\infty(U)$ and $f|_\ell$ is real analytic for each affine line ℓ .

Theorem [Bochnak–Siciak 1970-71]

Let $U \subseteq \mathbb{R}^n$ be open and $f : U \rightarrow \mathbb{R}$. Then:

- $f \in \mathcal{C}^\omega(U)$ iff $f \in \mathcal{C}^\infty(U)$ and $f|_\ell$ is real analytic for each affine line ℓ .
- $f \in \mathcal{C}^\omega(U)$ iff $f|_\pi$ is real analytic for each affine 2-plane π .

Theorem [Bochnak–Siciak 1970-71]

Let $U \subseteq \mathbb{R}^n$ be open and $f : U \rightarrow \mathbb{R}$. Then:

- $f \in \mathcal{C}^\omega(U)$ iff $f \in \mathcal{C}^\infty(U)$ and $f|_\ell$ is real analytic for each affine line ℓ .
- $f \in \mathcal{C}^\omega(U)$ iff $f|_\pi$ is real analytic for each affine 2-plane π .

Theorem [Bochnak–Kollar–Kucharz 2020]

Let M be a real analytic manifold of dimension $n \geq 3$. Then $f : M \rightarrow \mathbb{R}$ is real analytic iff $f|_N$ is real analytic for each real analytic submanifold $N \subseteq M$ homeomorphic to \mathbb{S}^2 .

Theorem [R 2019], [R 2024]

Let $X \subseteq \mathbb{R}^n$ be a Hölder set or a simple closed fat subanalytic set.

- $f \in \mathcal{C}^\omega(X)$, i.e., f extends to a real analytic function on an open neighborhood of X , iff $f \in \mathcal{C}^\infty(X)$ and $f \circ c \in \mathcal{C}^\omega$ for each germ $c : (\mathbb{R}, 0) \rightarrow X$ of a polynomial curve.

Theorem [R 2019], [R 2024]

Let $X \subseteq \mathbb{R}^n$ be a Hölder set or a simple closed fat subanalytic set.

- $f \in \mathcal{C}^\omega(X)$, i.e., f extends to a real analytic function on an open neighborhood of X , iff $f \in \mathcal{C}^\infty(X)$ and $f \circ c \in \mathcal{C}^\omega$ for each germ $c : (\mathbb{R}, 0) \rightarrow X$ of a polynomial curve.

Without presupposing smoothness:

Theorem [R 2019], [R 2024]

Let $X \subseteq \mathbb{R}^n$ be a Hölder set or a simple closed fat subanalytic set.

- $f \in \mathcal{C}^\omega(X)$, i.e., f extends to a real analytic function on an open neighborhood of X , iff $f \in \mathcal{C}^\infty(X)$ and $f \circ c \in \mathcal{C}^\omega$ for each germ $c : (\mathbb{R}, 0) \rightarrow X$ of a polynomial curve.

Without presupposing smoothness:

- In dimension 2, $f \in \mathcal{C}^\omega(X)$ iff $f \circ p \in \mathcal{C}^\omega$ for each germ $p : (\mathbb{R}^2, 0) \rightarrow X$ of a polynomial map.

Theorem [R 2019], [R 2024]

Let $X \subseteq \mathbb{R}^n$ be a Hölder set or a simple closed fat subanalytic set.

- $f \in \mathcal{C}^\omega(X)$, i.e., f extends to a real analytic function on an open neighborhood of X , iff $f \in \mathcal{C}^\infty(X)$ and $f \circ c \in \mathcal{C}^\omega$ for each germ $c : (\mathbb{R}, 0) \rightarrow X$ of a polynomial curve.

Without presupposing smoothness:

- In dimension 2, $f \in \mathcal{C}^\omega(X)$ iff $f \circ p \in \mathcal{C}^\omega$ for each germ $p : (\mathbb{R}^2, 0) \rightarrow X$ of a polynomial map.
- If X is a Lipschitz set, $f \in \mathcal{C}^\omega(X)$ iff $f \circ p \in \mathcal{C}^\omega$ for each germ $p : (\mathbb{R}^2, 0) \rightarrow X$ of a polynomial map of degree ≤ 2 .

Theorem [R 2019], [R 2024]

Let $X \subseteq \mathbb{R}^n$ be a Hölder set or a simple closed fat subanalytic set.

- $f \in \mathcal{C}^\omega(X)$, i.e., f extends to a real analytic function on an open neighborhood of X , iff $f \in \mathcal{C}^\infty(X)$ and $f \circ c \in \mathcal{C}^\omega$ for each germ $c : (\mathbb{R}, 0) \rightarrow X$ of a polynomial curve.

Without presupposing smoothness:

- In dimension 2, $f \in \mathcal{C}^\omega(X)$ iff $f \circ p \in \mathcal{C}^\omega$ for each germ $p : (\mathbb{R}^2, 0) \rightarrow X$ of a polynomial map.
- If X is a Lipschitz set, $f \in \mathcal{C}^\omega(X)$ iff $f \circ p \in \mathcal{C}^\omega$ for each germ $p : (\mathbb{R}^2, 0) \rightarrow X$ of a polynomial map of degree ≤ 2 .

This is wrong for $X = \{(x, y) \in \mathbb{R}^2 : x \in [0, 1], x^{\sqrt{2}} \leq y \leq x^{\sqrt{2}} + x^2\}$.

Theorem [R 2019], [R 2024]

Let $X \subseteq \mathbb{R}^n$ be a Hölder set or a simple closed fat subanalytic set.

- $f \in \mathcal{C}^\omega(X)$, i.e., f extends to a real analytic function on an open neighborhood of X , iff $f \in \mathcal{C}^\infty(X)$ and $f \circ c \in \mathcal{C}^\omega$ for each germ $c : (\mathbb{R}, 0) \rightarrow X$ of a polynomial curve.

Without presupposing smoothness:

- In dimension 2, $f \in \mathcal{C}^\omega(X)$ iff $f \circ p \in \mathcal{C}^\omega$ for each germ $p : (\mathbb{R}^2, 0) \rightarrow X$ of a polynomial map.
- If X is a Lipschitz set, $f \in \mathcal{C}^\omega(X)$ iff $f \circ p \in \mathcal{C}^\omega$ for each germ $p : (\mathbb{R}^2, 0) \rightarrow X$ of a polynomial map of degree ≤ 2 .

This is wrong for $X = \{(x, y) \in \mathbb{R}^2 : x \in [0, 1], x^{\sqrt{2}} \leq y \leq x^{\sqrt{2}} + x^2\}$.

Quantitative versions

The cuspidality of X determines the maximal degree of the polynomial maps needed for testing real analyticity (in first item: $d = 2 \min_{(m, N)} \max\{m, N\}$).

Theorem [Kriegl–Michor–R 2009]

Let $U \subseteq \mathbb{R}^n$ be open and $f : U \rightarrow \mathbb{R}$. Let $\mathcal{E}^{\{*\}}$ be a non-quasianalytic ultradifferentiable class of Roumieu type that is stable under composition. Then $f \in \mathcal{E}^{\{*\}}(U)$ iff $f_*\mathcal{E}^{\{*\}}(\mathbb{R}, U) \subseteq \mathcal{E}^{\{*\}}(\mathbb{R}, \mathbb{R})$.

This is not true in the quasianalytic setting. [Jaffe 2016], [R 2019]

Theorem [Kriegl–Michor–R 2009]

Let $U \subseteq \mathbb{R}^n$ be open and $f : U \rightarrow \mathbb{R}$. Let $\mathcal{E}^{\{*\}}$ be a non-quasianalytic ultradifferentiable class of Roumieu type that is stable under composition. Then $f \in \mathcal{E}^{\{*\}}(U)$ iff $f_* \mathcal{E}^{\{*\}}(\mathbb{R}, U) \subseteq \mathcal{E}^{\{*\}}(\mathbb{R}, \mathbb{R})$.

This is not true in the quasianalytic setting. [Jaffe 2016], [R 2019]

Theorem [R 2025]

Let $X \subseteq \mathbb{R}^n$ be a simple closed fat subanalytic set. Let ω be a non-quasianalytic concave weight function satisfying

$$\omega(t^2) = O(\omega(t)) \quad \text{as } t \rightarrow \infty,$$

e.g., $\omega_s(t) = ((\log t)_+)^s$ for $s > 1$. Then

$$\begin{aligned} \mathcal{AE}^{\{\omega\}}(X) &:= \{f : X \rightarrow \mathbb{R} : f_* \mathcal{E}^{\{\omega\}}(\mathbb{R}, X) \subseteq \mathcal{E}^{\{\omega\}}(\mathbb{R}, \mathbb{R})\} \\ &= \left\{ f \in \mathcal{C}^\infty(X) : \forall K \subseteq X \ \exists \rho > 0 \ \sup_{\alpha \in \mathbb{N}^n} \frac{\|\partial^\alpha f\|_K}{e^{-\frac{\varphi^*(\rho|\alpha|)}{\rho}}} < \infty \right\} \\ &=: \mathcal{E}^{\{\omega\}}(X). \end{aligned}$$

Theorem [R 2025]

- Let $X \subseteq \mathbb{R}^n$ be a simple closed fat subanalytic set. The identities

$$\mathcal{AC}^\infty(X) = \mathcal{C}^\infty(X), \quad \mathcal{AC}^\omega(X) = \mathcal{C}^\omega(X), \quad \mathcal{AE}^{\{\omega\}}(X) = \mathcal{E}^{\{\omega\}}(X),$$

are bornological isomorphisms w.r.t. their natural locally convex topologies.

Theorem [R 2025]

- Let $X \subseteq \mathbb{R}^n$ be a simple closed fat subanalytic set. The identities

$$\mathcal{AC}^\infty(X) = \mathcal{C}^\infty(X), \quad \mathcal{AC}^\omega(X) = \mathcal{C}^\omega(X), \quad \mathcal{AE}^{\{\omega\}}(X) = \mathcal{E}^{\{\omega\}}(X),$$

are **bornological isomorphisms** w.r.t. their natural locally convex topologies.

- They can be lifted to **maps with values in a convenient vector space E** :

$$\mathcal{AC}^\infty(X, E) \cong \mathcal{C}^\infty(X, E),$$

$$\mathcal{AC}^\omega(X, E) \cong \mathcal{C}^\omega(X, E),$$

$$\mathcal{AE}^{\{\omega\}}(X, E) \cong \mathcal{E}^{\{\omega\}}(X, E).$$

Theorem [R 2025]

- Let $X \subseteq \mathbb{R}^n$ be a simple closed fat subanalytic set. The identities

$$\mathcal{AC}^\infty(X) = \mathcal{C}^\infty(X), \quad \mathcal{AC}^\omega(X) = \mathcal{C}^\omega(X), \quad \mathcal{AE}^{\{\omega\}}(X) = \mathcal{E}^{\{\omega\}}(X),$$

are **bornological isomorphisms** w.r.t. their natural locally convex topologies.

- They can be lifted to **maps with values in a convenient vector space E** :

$$\mathcal{AC}^\infty(X, E) \cong \mathcal{C}^\infty(X, E),$$

$$\mathcal{AC}^\omega(X, E) \cong \mathcal{C}^\omega(X, E),$$

$$\mathcal{AE}^{\{\omega\}}(X, E) \cong \mathcal{E}^{\{\omega\}}(X, E).$$

- These spaces are convenient and respective **exponential laws** hold:

$$\mathcal{AC}^\infty(X_1, \mathcal{AC}^\infty(X_2, E)) \cong \mathcal{AC}^\infty(X_1 \times X_2, E),$$

$$\mathcal{C}^\infty(X_1, \mathcal{C}^\infty(X_2, E)) \cong \mathcal{C}^\infty(X_1 \times X_2, E), \quad \text{etc.}$$

where $X_i \subseteq \mathbb{R}^{n_i}$ are simple closed fat subanalytic sets.

On Hölder sets

- Uniform cusp property
- Curve lemmas

On Hölder sets

- Uniform cusp property
- Curve lemmas

On subanalytic sets

- UPC and the result on Hölder sets
- Łojasiewicz inequality
- L-regular decomposition
- Rectilinearization: If $X \subseteq \mathbb{R}^n$ is compact subanalytic, then there exist finitely many real analytic maps $\varphi_i : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that
 - there are compact $Y_i \subseteq \mathbb{R}^n$, such that $\bigcup_i \varphi_i(Y_i)$ is a neighborhood of X ,
 - for each i , $\varphi_i^{-1}(X)$ is a union of quadrants.
- Uniformization: If $X \subseteq \mathbb{R}^n$ is closed subanalytic, then $X = \varphi(N)$ for a proper real analytic map $\varphi : N \rightarrow \mathbb{R}^n$ on a real analytic manifold N .

Happy Birthday!