

Injectivity and surjectivity of the Stieltjes moment mapping in Gelfand-Shilov classes defined by weight sequences with shifted moments

Javier Sanz (University of Valladolid, Spain)

Joint work with J. Jiménez-Garrido (U. Cantabria, Spain),
I. Miguel-Cantero (U. Valladolid) and G. Schindl (U. Vienna, Austria)

PID2022-139631NB-I00

International Workshop on Functional Analysis
on the occasion of the 70th birthday of José Bonet
Universitat Politècnica de València, 18 de junio de 2025

Weight sequences

$$\mathbb{N}_0 = \{0, 1, 2, \dots\}.$$

Let $\mathbf{M} = (M_n)_{n \in \mathbb{N}_0}$ be a sequence of positive real numbers, with $M_0 = 1$.

\mathbf{M} is said to be **logarithmically convex or (lc)** ((M1) in H. Komatsu (1973)) if

$$M_n^2 \leq M_{n-1} M_{n+1}, \quad n \geq 1.$$

Equivalently, the **sequence of quotients** of \mathbf{M} , $\mathbf{m} = (m_n := \frac{M_{n+1}}{M_n})_{n \in \mathbb{N}_0}$, is nondecreasing.

We frequently assume that \mathbf{M} is (lc) and $\lim_{n \rightarrow \infty} m_n = \infty$, and we say \mathbf{M} is a **weight sequence**.

Associated functions

The **associated functions** with a weight sequence M are defined as

$$\omega_M(t) := \sup_{p \in \mathbb{N}_0} \log \frac{t^p}{M_p}, \quad t > 0; \quad \omega_M(0) := 0,$$

and

$$h_M(t) := \inf_{p \in \mathbb{N}_0} M_p t^p, \quad t > 0; \quad h_M(0) := 0.$$

They are related by

$$h_M(t) = \exp(-\omega_M(1/t)), \quad t > 0.$$

Stieltjes moments

Let M be a sequence and $h > 0$. $(C_{M,h}(0, \infty), s_{M,h}^0)$ is the Banach space consisting of all $\varphi \in C((0, \infty))$ such that

$$s_{M,h}^0(\varphi) := \sup_{p \in \mathbb{N}_0} \sup_{x \in (0, \infty)} \frac{x^p |\varphi(x)|}{h^p M_p} < \infty, \quad \text{i. e. } |\varphi(x)| \leq s_{M,h}^0(\varphi) h_M(h/x).$$

We set $C_{\{M\}}(0, \infty) = \bigcup_{h > 0} C_{M,h}(0, \infty)$, an (LB) space.

The p -th Stieltjes moment, $p \in \mathbb{N}_0$, of $\varphi \in C_{\{M\}}(0, \infty)$ is defined as

$$\mu_p(\varphi) := \int_0^\infty x^p \varphi(x) dx.$$

Stieltjes moments

Let M be a sequence and $h > 0$. $(C_{M,h}(0, \infty), s_{M,h}^0)$ is the Banach space consisting of all $\varphi \in C((0, \infty))$ such that

$$s_{M,h}^0(\varphi) := \sup_{p \in \mathbb{N}_0} \sup_{x \in (0, \infty)} \frac{x^p |\varphi(x)|}{h^p M_p} < \infty, \quad \text{i. e. } |\varphi(x)| \leq s_{M,h}^0(\varphi) h_M(h/x).$$

We set $C_{\{M\}}(0, \infty) = \bigcup_{h > 0} C_{M,h}(0, \infty)$, an (LB) space.

The p -th Stieltjes moment, $p \in \mathbb{N}_0$, of $\varphi \in C_{\{M\}}(0, \infty)$ is defined as

$$\mu_p(\varphi) := \int_0^\infty x^p \varphi(x) dx.$$

$$\begin{aligned} |\mu_p(\varphi)| &\leq \int_0^{hm_p} x^p |\varphi(x)| dx + \int_{hm_p}^\infty \frac{x^{p+2} |\varphi(x)|}{x^2} dx \\ &\leq s_{M,h}^0(\varphi) \left(hm_p h^p M_p + h^{p+2} M_{p+2} \frac{1}{hm_p} \right) \\ &= s_{M,h}^0(\varphi) h^{p+1} \left(M_{p+1} + \frac{M_{p+2} M_p}{M_{p+1}} \right). \end{aligned}$$

The moment mapping under (dc)

M satisfies (dc) or is **derivation closed** if for some $C_0 > 0$ and $H > 1$,

$$M_{p+1} \leq C_0 H^p M_p, \quad p \in \mathbb{N}_0.$$

Then

$$\begin{aligned} |\mu_p(\varphi)| &\leq s_{M,h}^0(\varphi) h^{p+1} \left(M_{p+1} + \frac{M_{p+2} M_p}{M_{p+1}} \right) \\ &\leq C_0 s_{M,h}^0(\varphi) h^{p+1} (H^p M_p + H^{p+1} M_p), \end{aligned}$$

and $(\mu_p(\varphi))_{p \in \mathbb{N}_0}$ belongs to

$$\Lambda_{\{M\}} = \{(c_p)_{p \in \mathbb{N}_0} : \sup_{p \in \mathbb{N}_0} \frac{|c_p|}{h^p M_p} < \infty \text{ for some } h > 0\}.$$

The moment mapping under (dc)

\mathcal{M} satisfies (dc) or is **derivation closed** if for some $C_0 > 0$ and $H > 1$,

$$M_{p+1} \leq C_0 H^p M_p, \quad p \in \mathbb{N}_0.$$

Then

$$\begin{aligned} |\mu_p(\varphi)| &\leq s_{\mathcal{M},h}^0(\varphi) h^{p+1} \left(M_{p+1} + \frac{M_{p+2} M_p}{M_{p+1}} \right) \\ &\leq C_0 s_{\mathcal{M},h}^0(\varphi) h^{p+1} (H^p M_p + H^{p+1} M_p), \end{aligned}$$

and $(\mu_p(\varphi))_{p \in \mathbb{N}_0}$ belongs to

$$\Lambda_{\{\mathcal{M}\}} = \{(c_p)_{p \in \mathbb{N}_0} : \sup_{p \in \mathbb{N}_0} \frac{|c_p|}{h^p M_p} < \infty \text{ for some } h > 0\}.$$

A standard **Stieltjes moment problem** in this context consists in the study of the surjectivity and injectivity of the **Stieltjes moment mapping** \mathcal{M} , sending φ to $(\mu_p(\varphi))_{p \in \mathbb{N}_0}$, when defined on $C_{\{\mathcal{M}\}}(0, \infty)$ or its subspaces, the **Gelfand-Shilov classes**, and with **target space** $\Lambda_{\{\mathcal{M}\}}$.

Gelfand-Shilov classes, I

Let M and A be sequences of positive real numbers. For $h > 0$,
 $(\mathcal{S}_{M,h}^{A,h}(\mathbb{R}), s_{M,h}^{A,h})$ is the Banach space of all $\varphi \in C^\infty(\mathbb{R})$ such that

$$s_{M,h}^{A,h}(\varphi) := \sup_{p,q \in \mathbb{N}_0} \sup_{x \in \mathbb{R}} \frac{|x^p \varphi^{(q)}(x)|}{h^{p+q} M_p A_q} < \infty.$$

We set $\mathcal{S}_{\{M\}}^{\{A\}}(\mathbb{R}) = \bigcup_{h>0} \mathcal{S}_{M,h}^{A,h}(\mathbb{R})$, which is an (LB) space.

Gelfand-Shilov classes, I

Let M and A be sequences of positive real numbers. For $h > 0$, $(\mathcal{S}_{M,h}^{A,h}(\mathbb{R}), s_{M,h}^{A,h})$ is the Banach space of all $\varphi \in C^\infty(\mathbb{R})$ such that

$$s_{M,h}^{A,h}(\varphi) := \sup_{p,q \in \mathbb{N}_0} \sup_{x \in \mathbb{R}} \frac{|x^p \varphi^{(q)}(x)|}{h^{p+q} M_p A_q} < \infty.$$

We set $\mathcal{S}_{\{M\}}^{\{A\}}(\mathbb{R}) = \bigcup_{h>0} \mathcal{S}_{M,h}^{A,h}(\mathbb{R})$, which is an (LB) space.

For $h > 0$, $\mathcal{S}_{M,h}(\mathbb{R})$ consists of all $\varphi \in C^\infty(\mathbb{R})$ such that, for all $q \in \mathbb{N}_0$,

$$s_{M,h}^q(\varphi) := \sup_{p \in \mathbb{N}_0} \sup_{x \in \mathbb{R}} \frac{|x^p \varphi^{(q)}(x)|}{h^p M_p} < \infty.$$

$(\mathcal{S}_{M,h}(\mathbb{R}), (s_{M,h}^q)_{q \in \mathbb{N}_0})$ is a Fréchet space.

$\mathcal{S}_{\{M\}}(\mathbb{R}) = \bigcup_{h>0} \mathcal{S}_{M,h}(\mathbb{R})$ is endowed with its natural (LF) space structure.

Gelfand-Shilov classes, II

We also define

$$\mathcal{S}_{\{M\}}^{\{\mathbf{A}\}}(0, \infty) := \{\varphi \in \mathcal{S}_{\{M\}}^{\{\mathbf{A}\}}(\mathbb{R}) \mid \text{supp } \varphi \subseteq [0, \infty)\}$$

and

$$\mathcal{S}_{\{M\}}(0, \infty) := \{\varphi \in \mathcal{S}_{\{M\}}(\mathbb{R}) \mid \text{supp } \varphi \subseteq [0, \infty)\},$$

with their topologies inherited from their ambient spaces.

Gelfand-Shilov classes, II

We also define

$$\mathcal{S}_{\{M\}}^{\{\mathbf{A}\}}(0, \infty) := \{\varphi \in \mathcal{S}_{\{M\}}^{\{\mathbf{A}\}}(\mathbb{R}) \mid \text{supp } \varphi \subseteq [0, \infty)\}$$

and

$$\mathcal{S}_{\{M\}}(0, \infty) := \{\varphi \in \mathcal{S}_{\{M\}}(\mathbb{R}) \mid \text{supp } \varphi \subseteq [0, \infty)\},$$

with their topologies inherited from their ambient spaces.

If \mathbf{A} satisfies (lc), then $\mathcal{S}_{\{M\}}^{\{\mathbf{A}\}}(0, \infty)$ is **non-trivial** (i. e., it contains non identically zero functions) if and only if $\sum_{p=0}^{\infty} 1/a_p < \infty$, as follows from the Denjoy-Carleman theorem.

Results under (dc) or stronger conditions

A. L. Durán, R. Estrada, Proc. Amer. Math. Soc. 120 (1994), 529–534.

They prove **surjectivity in the Schwartz space, combining the Fourier transform with Borel-Ritt-like theorems from asymptotic analysis.**

S.-Y. Chung, D. Kim, Y. Yeom, Fract. Calc. Appl. Anal. 2, 5 (1999), 623–629.

Surjectivity in $\mathcal{S}_{\{(p!^\alpha)_p\}}(0, \infty)$ (the **Gevrey** case) whenever $\alpha > 2$.

A. Lastra, J. S., Studia Math. 192 (2009), 111–128.

Surjectivity and (local) right inverses in $\mathcal{S}_{\{(p!M_p)_p\}}(0, \infty)$ for **strongly regular sequences M** (with **moderate growth, stronger than (dc)**).

A. Debrouwere, J. Jiménez-Garrido, J. S., RACSAM (2019) 113:3341–3358.

Surjectivity in $\mathcal{S}_{\{(p!M_p)_p\}}(0, \infty)$ and $\mathcal{S}_{\{(p!M_p)_p\}}^{\{(p!A_p)_p\}}(0, \infty)$, **moderate growth is frequently weakened into (dc)**, and **injectivity is characterized**.

A. Debrouwere, Studia Math. 254 (2020), 295–323.

Complete **characterization of the surjectivity and the existence of global right inverses** for the moment mapping in Gelfand-Shilov spaces of both Roumieu and Beurling type under (dc), which is essential for his approach.

What can be said without (dc)?

For $\varphi \in C_{\mathcal{M},h}(0, \infty)$,

$$|\varphi(x)| \leq s_{\mathcal{M},h}^0(\varphi)h_{\mathcal{M}}(h/x) = s_{\mathcal{M},h}^0(\varphi) \frac{h^{p+1}M_{p+1}}{x^{p+1}}, \quad x \in (hm_p, hm_{p+1});$$

we further split the interval and have

$$\begin{aligned} |\mu_p(\varphi)| &\leq \left(\int_0^{hm_p} + \int_{hm_p}^{hm_{p+1}} + \int_{hm_{p+1}}^{\infty} \right) x^p |\varphi(x)| dx \\ &\leq s_{\mathcal{M},h}^0(\varphi) \left(hm_p h^p M_p + h^{p+1} M_{p+1} \log \left(\frac{m_{p+1}}{m_p} \right) + h^{p+2} M_{p+2} \frac{1}{hm_{p+1}} \right) \\ &= s_{\mathcal{M},h}^0(\varphi) h^{p+1} \left(M_{p+1} + M_{p+1} \log \left(\frac{m_{p+1}}{m_p} \right) + M_{p+1} \right). \end{aligned}$$

What can be said without (dc)?

For $\varphi \in C_{\mathbf{M},h}(0, \infty)$,

$$|\varphi(x)| \leq s_{\mathbf{M},h}^0(\varphi) h_{\mathbf{M}}(h/x) = s_{\mathbf{M},h}^0(\varphi) \frac{h^{p+1} M_{p+1}}{x^{p+1}}, \quad x \in (h m_p, h m_{p+1});$$

we further split the interval and have

$$\begin{aligned} |\mu_p(\varphi)| &\leq \left(\int_0^{h m_p} + \int_{h m_p}^{h m_{p+1}} + \int_{h m_{p+1}}^{\infty} \right) x^p |\varphi(x)| dx \\ &\leq s_{\mathbf{M},h}^0(\varphi) \left(h m_p h^p M_p + h^{p+1} M_{p+1} \log \left(\frac{m_{p+1}}{m_p} \right) + h^{p+2} M_{p+2} \frac{1}{h m_{p+1}} \right) \\ &= s_{\mathbf{M},h}^0(\varphi) h^{p+1} \left(M_{p+1} + M_{p+1} \log \left(\frac{m_{p+1}}{m_p} \right) + M_{p+1} \right). \end{aligned}$$

DEF.: \mathbf{M} has **shifted moments** ((sm) for short) if for some $C_0 > 0$ and $H > 1$,

$$\log(m_{p+1}/m_p) \leq C_0 H^p, \quad p \in \mathbb{N}_0.$$

Then,

$$|\mu_p(\varphi)| \leq s_{\mathbf{M},h}^0(\varphi) h^{p+1} (2 + C_0 H^p) M_{p+1}.$$

A new Stieltjes moment problem

If \mathcal{M} satisfies (sm) and we put $\mathcal{M}_{+1} := (M_{p+1})_p$, the moment mapping $\mathcal{M} : C_{\{\mathcal{M}\}}(0, \infty) \rightarrow \Lambda_{\{\mathcal{M}_{+1}\}}$ is well-defined and continuous, and a **new moment problem** can be considered.

A new Stieltjes moment problem

If M satisfies (sm) and we put $M_{+1} := (M_{p+1})_p$, the moment mapping $\mathcal{M} : C_{\{M\}}(0, \infty) \rightarrow \Lambda_{\{M_{+1}\}}$ is well-defined and continuous, and a new moment problem can be considered.

Remarks:

$$(\text{dc}) \Leftrightarrow \Lambda_{\{M\}} = \Lambda_{\{M_{+1}\}} \Leftrightarrow \exists C, H > 0: \forall p, m_p \leq CH^p;$$

$$(\text{sm}) \Leftrightarrow \exists C, H > 0: \forall p, \log(m_p) \leq CH^p.$$

So, (dc) implies (sm), which is strictly weaker.

Moreover, under minimal hypotheses, these conditions are not only sufficient but also necessary for the corresponding moment problems to be well-posed.

Thilliez's index

V. Thilliez (2003) introduces a growth index $\gamma(\mathbf{M})$. Now we know:

$$\begin{aligned}\gamma(\mathbf{M}) &= \sup\{\gamma > 0 : (m_p/(p+1)^\gamma)_{p \in \mathbb{N}_0} \text{ is almost increasing}\} \\ &=: \text{lower Matuszewska index of } \mathbf{m}.\end{aligned}$$

Thilliez's index

V. Thilliez (2003) introduces a growth index $\gamma(\mathbf{M})$. Now we know:

$$\begin{aligned}\gamma(\mathbf{M}) &= \sup\{\gamma > 0 : (m_p/(p+1)^\gamma)_{p \in \mathbb{N}_0} \text{ is almost increasing}\} \\ &=: \text{lower Matuszewska index of } \mathbf{m}.\end{aligned}$$

Moreover, $\gamma(\mathbf{M}) > 0$ if and only if there exists $B > 0$ such that

$$\sum_{k \geq n} \frac{M_k}{(k+1)M_{k+1}} \leq B \frac{M_n}{M_{n+1}}, \quad n \in \mathbb{N}_0. \quad [\widehat{\mathbf{M}} := (n!M_n)_{n \in \mathbb{N}_0} \text{ has (M3)}]$$

Thilliez's index

V. Thilliez (2003) introduces a growth index $\gamma(\mathbf{M})$. Now we know:

$$\begin{aligned}\gamma(\mathbf{M}) &= \sup\{\gamma > 0 : (m_p/(p+1)^\gamma)_{p \in \mathbb{N}_0} \text{ is almost increasing}\} \\ &=: \text{lower Matuszewska index of } \mathbf{m}.\end{aligned}$$

Moreover, $\gamma(\mathbf{M}) > 0$ if and only if there exists $B > 0$ such that

$$\sum_{k \geq n} \frac{M_k}{(k+1)M_{k+1}} \leq B \frac{M_n}{M_{n+1}}, \quad n \in \mathbb{N}_0. \quad [\widehat{\mathbf{M}} := (n!M_n)_{n \in \mathbb{N}_0} \text{ has (M3)}]$$

Examples: $\gamma((\prod_{k=0}^n \log^\beta(e+k))_{n \in \mathbb{N}_0}) = 0, \quad \beta > 0$

$\gamma((n!^\alpha \prod_{m=0}^n \log^\beta(e+m))_{n \in \mathbb{N}_0}) = \alpha, \quad \alpha > 0, \beta \in \mathbb{R} \quad (\beta = 0, \text{Gevrey})$

$\gamma((q^{n^\sigma})_{n \in \mathbb{N}_0}) = \infty, \quad q > 1, \sigma > 1 \quad (\sigma = 2, \text{q-Gevrey})$

$\gamma((n^{\tau n^\sigma})_{n \in \mathbb{N}_0}) = \infty, \quad \tau > 0, \sigma > 1 \quad (\text{Pilipović-Teofanov-Tomić}).$

Optimal \mathbf{M} -flat functions

J. Jiménez-Garrido, I. Miguel-Cantero, J. S., G. Schindl, Results Math. (2023) 78:98.

Proposition

Let \mathbf{M} be a weight sequence with $\gamma(\mathbf{M}) > 0$. Then, for any $0 < \gamma < \gamma(\mathbf{M})$ there exists an optimal $\{\mathbf{M}\}$ -flat function G in

$S_\gamma = \{z \in \mathcal{R} : |\arg(z)| < \pi\gamma/2\}$, i.e., $G \in \mathcal{O}(S_\gamma)$ and

- (i) $\exists K_3, K_4 > 0 : |G(z)| \leq K_3 h_{\mathbf{M}}(K_4|z|)$ for all $z \in S$, ($\{\mathbf{M}\}$ -flatness)
- (ii) $\exists K_1, K_2 > 0 : K_1 h_{\mathbf{M}}(K_2 x) \leq G(x)$ for all $x > 0$.

Target space for the Stieltjes moment mapping

If G is an optimal $\{\mathbf{M}\}$ –flat function in S_γ , we define a kernel function

$$e(z) := G\left(\frac{1}{z}\right), \quad z \in S_\gamma.$$

We have $K_1 h_{\mathbf{M}}\left(\frac{K_2}{x}\right) \leq e(x) \leq K_3 h_{\mathbf{M}}\left(\frac{K_4}{x}\right) \implies e \in C_{\{\mathbf{M}\}}(0, \infty)$.

Target space for the Stieltjes moment mapping

If G is an optimal $\{\mathbf{M}\}$ -flat function in S_γ , we define a kernel function

$$e(z) := G\left(\frac{1}{z}\right), \quad z \in S_\gamma.$$

We have $K_1 h_{\mathbf{M}}\left(\frac{K_2}{x}\right) \leq e(x) \leq K_3 h_{\mathbf{M}}\left(\frac{K_4}{x}\right) \implies e \in C_{\{\mathbf{M}\}}(0, \infty)$.

Proposition (J. Jiménez-Garrido, I. Miguel-Cantero, J. S., G. Schindl (2025))

Suppose \mathbf{M} is a weight sequence with $\gamma(\mathbf{M}) > 0$. Then,

- \mathbf{M} satisfies (dc) if and only if $\mathcal{M}(C_{\{\mathbf{M}\}}(0, \infty)) \subset \Lambda_{\{\mathbf{M}\}}$ if and only if for every \mathbf{M} -flat function G one has $(\mu_p(e))_p$ is equivalent to \mathbf{M} .
- \mathbf{M} satisfies (sm) if and only if $\mathcal{M}(C_{\{\mathbf{M}\}}(0, \infty)) \subset \Lambda_{\{\mathbf{M}_{+1}\}}$ if and only if for every \mathbf{M} -flat function G one has $(\mu_p(e))_p$ is equivalent to \mathbf{M}_{+1} .

The Fourier transform on Gelfand-Shilov classes

The Fourier transform is considered in the form

$$\mathcal{F}(\varphi)(\xi) = \widehat{\varphi}(\xi) = \int_{-\infty}^{\infty} \varphi(x) e^{ix\xi} dx, \quad \varphi \in L^1(\mathbb{R}).$$

Proposition (J. Jiménez-Garrido, I. Miguel-Cantero, J. S., G. Schindl (2025))

Let M be a weight sequence satisfying (sm), and A be either an almost increasing sequence, or a sequence such that $\liminf_{p \rightarrow \infty} A_p^{1/p} > 0$ and \widehat{A} satisfies (lc). Then

- (i) $\mathcal{F}: \mathcal{S}_{\{M\}}^{\{\widehat{A}\}}(\mathbb{R}) \rightarrow \mathcal{S}_{\{\widehat{A}\}}^{\{M+1\}}(\mathbb{R})$ is continuous, and the same holds at the level of Banach spaces with a uniform scaling of the value h .
- (ii) The previous statement is valid also for \mathcal{F}^{-1} .

Ultraholomorphic classes in a half-plane

We write \mathbb{H} for the open upper half-plane of \mathbb{C} . For $h > 0$,

$$\mathcal{A}_{M,h}(\mathbb{H}) := \{f \in \mathcal{O}(\mathbb{H}) : \|f\|_{M,h} := \sup_{p \in \mathbb{N}_0} \sup_{z \in \mathbb{H}} \frac{|f^{(p)}(z)|}{h^p M_p} < \infty\}.$$

$(\mathcal{A}_{M,h}(\mathbb{H}), \|\cdot\|_{M,h})$ is a Banach space, and $\mathcal{A}_{\{M\}}(\mathbb{H}) := \bigcup_{h>0} \mathcal{A}_{M,h}(\mathbb{H})$ an (LB) space.

Ultraholomorphic classes in a half-plane

We write \mathbb{H} for the open upper half-plane of \mathbb{C} . For $h > 0$,

$$\mathcal{A}_{M,h}(\mathbb{H}) := \{f \in \mathcal{O}(\mathbb{H}) : \|f\|_{M,h} := \sup_{p \in \mathbb{N}_0} \sup_{z \in \mathbb{H}} \frac{|f^{(p)}(z)|}{h^p M_p} < \infty\}.$$

$(\mathcal{A}_{M,h}(\mathbb{H}), \|\cdot\|_{M,h})$ is a Banach space, and $\mathcal{A}_{\{M\}}(\mathbb{H}) := \bigcup_{h>0} \mathcal{A}_{M,h}(\mathbb{H})$ an (LB) space.

The asymptotic (Peano-)Borel mapping

$$\mathcal{B} : \mathcal{A}_{\{M\}}(\mathbb{H}) \rightarrow \Lambda_{\{M\}}, \quad f \mapsto (f^{(p)}(0))_p,$$

is linear and continuous.

Auxiliary function and result

We say \mathbf{A} satisfies the condition (nq) if $\sum_{p=0}^{\infty} \frac{1}{(p+1)a_p} < \infty$.

Lemma (J. Jiménez-Garrido, I. Miguel-Cantero, J. S., G. Schindl (2025))

Let \mathbf{M} be a sequence satisfying (lc) and $\liminf_{p \rightarrow \infty} (M_p/p!)^{1/p} > 0$, and let \mathbf{A} satisfy (nq), and such that $\widehat{\mathbf{A}}$ is a weight sequence.

Then, there is $G_0 \in \mathcal{O}(\{\operatorname{Im}(z) > -1\})$ (A. Debrouwere, J. Jiménez-Garrido, J. S. (2019)), which does not vanish at any point, and such that the map

$$f \in \mathcal{A}_{\{\mathbf{M}+1\}}(\mathbb{H}) \rightarrow (fG_0)|_{\mathbb{R}} \in \mathcal{S}_{\{\widehat{\mathbf{A}}\}}^{\{\mathbf{M}+1\}}(\mathbb{R})$$

is continuous, also at the level of Banach spaces with a uniform scaling of the value h .

Moreover, if \mathbf{M} satisfies also (sm), then $(fG_0)|_{\mathbb{R}} \in \mathcal{F}(\mathcal{S}_{\{\mathbf{M}\}}^{\{\widehat{\mathbf{A}}\}}(0, \infty))$.

The Laplace transform on $C_{\{M\}}(0, \infty)$

The Laplace transform of $\varphi \in C_{\{M\}}(0, \infty)$ is defined as

$$\mathcal{L}(\varphi)(\zeta) = \int_0^\infty \varphi(x) e^{ix\zeta} dx, \quad \zeta \in \overline{\mathbb{H}}.$$

Lemma (J. Jiménez-Garrido, I. Miguel-Cantero, J. S., G. Schindl (2025))

Let M be a weight sequence satisfying (sm), and $H > 1$ be the constant appearing in (sm). Then, for every $h > 0$ the mapping

$\mathcal{L} : C_{M,h}(0, \infty) \rightarrow \mathcal{A}_{M+1, Hh}(\mathbb{H})$ is well-defined and continuous. Moreover, $\mathcal{L} : C_{\{M\}}(0, \infty) \rightarrow \mathcal{A}_{\{M+1\}}(\mathbb{H})$ is injective.

Injectivity of the Stieltjes moment mapping

Theorem (J. Jiménez-Garrido, I. Miguel-Cantero, J. S., G. Schindl (2025))

Let M be a weight sequence satisfying (sm) and $\liminf_{p \rightarrow \infty} (M_p/p!)^{1/p} > 0$, and let A be a sequence satisfying (nq) and such that \hat{A} is a weight sequence. Then, the following statements are equivalent:

- (i) $\sum_{p=0}^{\infty} \frac{1}{m_p^{1/2}} = \infty$.
- (ii) $\mathcal{B} : \mathcal{A}_{\{M+1\}}(\mathbb{H}) \rightarrow \Lambda_{\{M+1\}}$ is injective.
- (iii) $\mathcal{M} : C_{\{M\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ is injective.
- (iv) $\mathcal{M} : \mathcal{S}_{\{M\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ is injective.
- (v) $\mathcal{M} : \mathcal{S}_{\{M\}}^{\{\hat{A}\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ is injective.

Injectivity of the Stieltjes moment mapping

Theorem (J. Jiménez-Garrido, I. Miguel-Cantero, J. S., G. Schindl (2025))

Let M be a weight sequence satisfying (sm) and $\liminf_{p \rightarrow \infty} (M_p/p!)^{1/p} > 0$, and let A be a sequence satisfying (nq) and such that \widehat{A} is a weight sequence. Then, the following statements are equivalent:

- (i) $\sum_{p=0}^{\infty} \frac{1}{m_p^{1/2}} = \infty$.
- (ii) $\mathcal{B} : \mathcal{A}_{\{M+1\}}(\mathbb{H}) \rightarrow \Lambda_{\{M+1\}}$ is injective.
- (iii) $\mathcal{M} : C_{\{M\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ is injective.
- (iv) $\mathcal{M} : \mathcal{S}_{\{M\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ is injective.
- (v) $\mathcal{M} : \mathcal{S}_{\{M\}}^{\{\widehat{A}\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ is injective.

(i) \Leftrightarrow (ii): A result of B. Rodríguez Salinas (1955).

(iii) \Rightarrow (iv) \Rightarrow (v): By restriction.

Sketch of the proof

PROOF:

(ii) \Rightarrow (iii): Let $\varphi \in C_{\{M\}}(0, \infty)$ be such that $\mu_p(\varphi) = 0$ for all $p \in \mathbb{N}_0$.

Then $\mathcal{L}(\varphi) \in \mathcal{A}_{\{M+1\}}(\mathbb{H})$ and $\mathcal{L}(\varphi)^{(p)}(0) = i^p \mu_p(\varphi) = 0$ for all $p \in \mathbb{N}_0$.

By assumption, $\mathcal{L}(\varphi) \equiv 0$.

Since \mathcal{L} is injective, $\varphi \equiv 0$.

Sketch of the proof

PROOF:

(ii) \Rightarrow (iii): Let $\varphi \in C_{\{M\}}(0, \infty)$ be such that $\mu_p(\varphi) = 0$ for all $p \in \mathbb{N}_0$.

Then $\mathcal{L}(\varphi) \in \mathcal{A}_{\{M+1\}}(\mathbb{H})$ and $\mathcal{L}(\varphi)^{(p)}(0) = i^p \mu_p(\varphi) = 0$ for all $p \in \mathbb{N}_0$.

By assumption, $\mathcal{L}(\varphi) \equiv 0$.

Since \mathcal{L} is injective, $\varphi \equiv 0$.

(v) \Rightarrow (ii): Let $f \in \mathcal{A}_{\{M+1\}}(\mathbb{H})$ be such that $f^{(p)}(0) = 0$ for all $p \in \mathbb{N}_0$.

For the auxiliary function G_0 , we have that $(fG_0)|_{\mathbb{R}} = \widehat{\varphi}$ for some

$\varphi \in \mathcal{S}_{\{M\}}^{\{\widehat{\mathbf{A}}\}}(0, \infty)$.

For every $p \in \mathbb{N}_0$,

$$\mu_p(\varphi) = (-i)^p \widehat{\varphi}^{(p)}(0) = (-i)^p (fG_0)^{(p)}(0) = 0.$$

By assumption, $\varphi \equiv 0$ and, thus, $fG_0 \equiv 0$. Since G_0 does not vanish, we obtain that $f \equiv 0$.

Existence of right inverses for the Stieltjes moment mapping

Theorem (J. Jiménez-Garrido, I. Miguel-Cantero, J. S., G. Schindl (2025))

Let M be a weight sequence satisfying (sm), and let A be a sequence satisfying (nq) and such that \widehat{A} is a weight sequence. Then:

(I) (a) Each of the following statements implies the next one:

- (i) There exists $a > 0$ such that for every $h \geq 1$ there exists a linear and continuous operator $R_h: \Lambda_{M+1,h} \rightarrow \mathcal{S}_{M,ah}^{\widehat{A},ah}(0, \infty)$ such that $\mathcal{M} \circ R_h$ is the identity map in $\Lambda_{M+1,h}$
(i. e., $\mathcal{M}: \mathcal{S}_{\{M\}}^{\{\widehat{A}\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ admits local right inverses with a uniform scaling of h).*
- (ii) \mathcal{M} admits local right inverses in $\mathcal{S}_{\{M\}}(0, \infty)$ with a uniform scaling of h .*
- (iii) \mathcal{M} admits local right inverses in $C_{\{M\}}(0, \infty)$ with a uniform scaling of h .*
- (iv) \mathcal{B} admits local right inverses in $\mathcal{A}_{\{M+1\}}(\mathbb{H})$ with a uniform scaling of h .*

Surjectivity of the Stieltjes moment mapping

Theorem (J. Jiménez-Garrido, I. Miguel-Cantero, J. S., G. Schindl (2025))

(I) (b) *The following statements are equivalent:*

- (i') $\mathcal{M} : \mathcal{S}_{\{M\}}^{\{\widehat{A}\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ *is surjective.*
- (ii') $\mathcal{M} : \mathcal{S}_{\{M\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ *is surjective.*
- (iii') $\mathcal{M} : C_{\{M\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ *is surjective.*
- (iv') $\mathcal{B} : \mathcal{A}_{\{M+1\}}(\mathbb{H}) \rightarrow \Lambda_{\{M+1\}}$ *is surjective.*

Surjectivity of the Stieltjes moment mapping

Theorem (J. Jiménez-Garrido, I. Miguel-Cantero, J. S., G. Schindl (2025))

(I) (b) *The following statements are equivalent:*

- (i') $\mathcal{M} : \mathcal{S}_{\{M\}}^{\{\widehat{A}\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ *is surjective.*
- (ii') $\mathcal{M} : \mathcal{S}_{\{M\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ *is surjective.*
- (iii') $\mathcal{M} : C_{\{M\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ *is surjective.*
- (iv') $\mathcal{B} : \mathcal{A}_{\{M+1\}}(\mathbb{H}) \rightarrow \Lambda_{\{M+1\}}$ *is surjective.*

Any of the statements (i) – (iv) implies all of (i') – (iv').

Surjectivity of the Stieltjes moment mapping

Theorem (J. Jiménez-Garrido, I. Miguel-Cantero, J. S., G. Schindl (2025))

(I) (b) The following statements are equivalent:

- (i') $\mathcal{M} : \mathcal{S}_{\{M\}}^{\{\widehat{A}\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ is surjective.*
- (ii') $\mathcal{M} : \mathcal{S}_{\{M\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ is surjective.*
- (iii') $\mathcal{M} : C_{\{M\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ is surjective.*
- (iv') $\mathcal{B} : \mathcal{A}_{\{M+1\}}(\mathbb{H}) \rightarrow \Lambda_{\{M+1\}}$ is surjective.*

Any of the statements (i) – (iv) implies all of (i') – (iv').

Moreover, the condition

- (v') $\gamma(M) > 2$.*

implies (iv) (talk of J. Jiménez-Garrido), and so also (i') – (iv').

Surjectivity of the Stieltjes moment mapping

Theorem (J. Jiménez-Garrido, I. Miguel-Cantero, J. S., G. Schindl (2025))

(I) (b) The following statements are equivalent:

- (i') $\mathcal{M} : \mathcal{S}_{\{M\}}^{\{\widehat{A}\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ is surjective.*
- (ii') $\mathcal{M} : \mathcal{S}_{\{M\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ is surjective.*
- (iii') $\mathcal{M} : C_{\{M\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ is surjective.*
- (iv') $\mathcal{B} : \mathcal{A}_{\{M+1\}}(\mathbb{H}) \rightarrow \Lambda_{\{M+1\}}$ is surjective.*

Any of the statements (i) – (iv) implies all of (i') – (iv').

Moreover, the condition

- (v') $\gamma(M) > 2$.*

implies (iv) (talk of J. Jiménez-Garrido), and so also (i') – (iv').

(II) If M satisfies (dc), then (iv') implies (v') (A. Debrouwere (2020)).

So, the six conditions (i') – (v') and (iv) are equivalent ((iv) NEW).

Surjectivity of the Stieltjes moment mapping

Theorem (J. Jiménez-Garrido, I. Miguel-Cantero, J. S., G. Schindl (2025))

(I) (b) *The following statements are equivalent:*

- (i') $\mathcal{M} : \mathcal{S}_{\{M\}}^{\{\widehat{A}\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ *is surjective.*
- (ii') $\mathcal{M} : \mathcal{S}_{\{M\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ *is surjective.*
- (iii') $\mathcal{M} : C_{\{M\}}(0, \infty) \rightarrow \Lambda_{\{M+1\}}$ *is surjective.*
- (iv') $\mathcal{B} : \mathcal{A}_{\{M+1\}}(\mathbb{H}) \rightarrow \Lambda_{\{M+1\}}$ *is surjective.*

Any of the statements (i) – (iv) implies all of (i') – (iv').

Moreover, the condition

- (v') $\gamma(M) > 2$.

implies (iv) (talk of **J. Jiménez-Garrido**), and so also (i') – (iv').

(II) If M satisfies (dc), then (iv') implies (v') (**A. Debrouwere (2020)**).

So, the six conditions (i') – (v') and (iv) are equivalent ((iv) **NEW**).

(III) If M and A satisfy (dc), then all of (i) – (iv), (i') – (v') are equivalent ((i) – (iv) **NEW**).

Examples

(1) For $q > 1$ and $\sigma > 1$, $\mathbf{M}_{q,\sigma} := (q^{n^\sigma})_{n \in \mathbb{N}_0}$.

$\mathbf{M}_{q,\sigma}$ satisfies (dc) if and only if $\sigma \leq 2$; so, former results did not cover the case $\sigma > 2$.

As (sm) is satisfied for such σ and $\gamma(\mathbf{M}_{q,\sigma}) = \infty$, our results prove the moment mapping to be surjective onto $\Lambda_{\mathbf{M}_{+1}}$.

Examples

(1) For $q > 1$ and $\sigma > 1$, $\mathbf{M}_{q,\sigma} := (q^{n^\sigma})_{n \in \mathbb{N}_0}$.

$\mathbf{M}_{q,\sigma}$ satisfies (dc) if and only if $\sigma \leq 2$; so, former results did not cover the case $\sigma > 2$.

As (sm) is satisfied for such σ and $\gamma(\mathbf{M}_{q,\sigma}) = \infty$, our results prove the moment mapping to be surjective onto $\Lambda_{\mathbf{M}_{+1}}$.

(2) (S. Pilipović, N. Teofanov, F. Tomic)

$\mathbf{M}^{\tau,\sigma} = (n^{\tau n^\sigma})_{n \in \mathbb{N}_0}$ satisfies (dc) if and only if $1 < \sigma < 2$.

For $\sigma \geq 2$, surjectivity onto $\Lambda_{\mathbf{M}_{+1}}$ holds again because (sm) is satisfied and $\gamma(\mathbf{M}^{\tau,\sigma}) = \infty$.

Examples

(1) For $q > 1$ and $\sigma > 1$, $\mathbf{M}_{q,\sigma} := (q^{n^\sigma})_{n \in \mathbb{N}_0}$.

$\mathbf{M}_{q,\sigma}$ satisfies (dc) if and only if $\sigma \leq 2$; so, former results did not cover the case $\sigma > 2$.

As (sm) is satisfied for such σ and $\gamma(\mathbf{M}_{q,\sigma}) = \infty$, our results prove the moment mapping to be surjective onto $\Lambda_{\mathbf{M}_{+1}}$.

(2) (S. Pilipović, N. Teofanov, F. Tomic)

$\mathbf{M}^{\tau,\sigma} = (n^{\tau n^\sigma})_{n \in \mathbb{N}_0}$ satisfies (dc) if and only if $1 < \sigma < 2$.

For $\sigma \geq 2$, surjectivity onto $\Lambda_{\mathbf{M}_{+1}}$ holds again because (sm) is satisfied and $\gamma(\mathbf{M}^{\tau,\sigma}) = \infty$.

(3) Our results do not apply to rapidly growing sequences not satisfying (sm).

For example, if $\mathbf{M} = (q^{p^p})_p$ for $q > 1$, we have $\gamma(\mathbf{M}) = \infty > 0$, and since (sm) fails, we know $\mathcal{M}(C_{\{\mathbf{M}\}}(0, \infty)) \not\subset \Lambda_{\{\mathbf{M}_{+1}\}}$.

Open problem: Which is the correct target space for the moment problem in such cases?

THANK YOU VERY MUCH FOR YOUR ATTENTION!

HAPPY BIRTHDAY, PEPE!!!