

Generalized upper and lower Legendre conjugates for weight functions

Gerhard Schindl

This research was funded in whole or in part by the Austrian
Science Fund (FWF) 10.55776/PAT9445424

University of Vienna

Conference “Workshop in Functional Analysis WFAJB70”
Valencia
June 19th, 2025

Introduction & motivation - I

- (*) In the field of Functional Analysis several weighted spaces are studied, e.g.:
- (*) Classes of **ultradifferentiable** and **ultraholomorphic** functions, weighted spaces of **analytic functions** (on \mathbb{C} or \mathbb{D}), weighted spaces of globally defined functions of **Gelfand-Shilov-type**, weighted spaces of **sequences of complex numbers**, ...
- (*) Usually, weights are expressed in terms of a **weight sequence** $\mathbf{M} = (M_p)_{p \in \mathbb{N}} \in \mathbb{R}_{>0}^{\mathbb{N}}$ or in terms of a **weight function** $\omega : [0, +\infty) \rightarrow [0, +\infty)$.

Introduction & motivation - II

- (*) (Similar!) growth and regularity assumptions on \mathbf{M} and ω are required (and unavoidable).
- (*) Conditions on weights imply, or even characterize, (desired) properties for the corresponding weighted classes.
- (*) Given \mathbf{M} , then one can associate the (weight) function $\omega_{\mathbf{M}}$ (S. Mandelbrojt).
- (*) Conversely, given ω , then one can associate a one-parameter family of sequences $\mathbf{W}^{(\ell)}$, $\ell > 0$; i.e. a weight matrix (A. Rainer & G.S.).

Introduction & motivation - III

- (*) Modifications of sequences appear naturally: construct new sequences out of given ones.
- (*) This gives a controlled transformation/modification of regularity measured in terms of weight sequences.
- (*) A well understood operation: Given M, N , then consider the **convolved sequence** $M \star N$ (H. Komatsu).
- (*) Another natural modification: **multiplying and dividing** sequences point-/component-wise.

Introduction & motivation - IV

- (*) (Most) prominent: $\mathbf{M} \mapsto \widehat{\mathbf{M}} := \mathbf{G}^1 \cdot \mathbf{M}$, $\mathbf{M} \mapsto \check{\mathbf{M}} := \frac{\mathbf{M}}{\mathbf{G}^1}$.
- (*) $\mathbf{G}^s := (p!^s)_{p \in \mathbb{N}}$ shall denote the **Gevrey-sequence** with **index** $s > 0$, and so $\mathbf{G}^1 \cdot \mathbf{M} = (p! M_p)_{p \in \mathbb{N}}$, $\frac{\mathbf{M}}{\mathbf{G}^1} = \left(\frac{M_p}{p!} \right)_{p \in \mathbb{N}}$.
- (*) **Note:** $\mathbf{M} \mapsto \widehat{\mathbf{M}}$ preserves or even increases regularity properties for \mathbf{M} , whereas $\check{\mathbf{M}}$ might be "**non-standard**" even \mathbf{M} behaves "nice": consider e.g. $\mathbf{M} \equiv \mathbf{G}^s$, $1 < s < 2$.

Questions (and goals) - I

- (*) How are ω_M , $\widehat{\omega_M}$, $\check{\omega_M}$ related? So, how are these operations effecting the **associated (weight) function** ω_M ?
- (*) Replace \mathbf{G}^1 by an arbitrary **sequence** \mathbf{N} : Consider $\mathbf{M} \cdot \mathbf{N} := (M_p N_p)_{p \in \mathbb{N}}$, $\frac{\mathbf{M}}{\mathbf{N}} := \left(\frac{M_p}{N_p} \right)_{p \in \mathbb{N}}$ and study the relation between ω_M , ω_N and $\omega_{M \cdot N}$, $\omega_{\frac{M}{N}}$.
- (*) Again the situation is well-understood for the convolution: $\omega_{M \star N} = \omega_M + \omega_N$.

Questions (and goals) - II

- (*) Introduce operations between **abstractly weight functions** σ and τ yielding the analogous effect as multiplying/dividing sequences for the associated weight functions.
- (*) Work in a general setting and find applications for this approach.
- (*) **Note:** In general, $\frac{M}{N}$ can behave very irregular (**oscillation**) even if both M and N satisfy many (strong) growth conditions.

Known information

- (*) $\widehat{\omega_M}$ corresponds to the **lower Legendre conjugate/envelope** of ω_M and $\check{\omega_M}$ corresponds to the **upper Legendre conjugate/envelope**.
- (*) These conjugates have been used for abstractly given weight functions as well; e.g. for **ultradifferentiable almost analytic extensions** (H.-J. Petzsche & D. Vogt, 1984) and for **extension results in the ultraholomorphic setting** (J. Jiménez-Garrido, J. Sanz, and G. S., 2019).
- (*) Replacing \mathbf{G}^1 by some/any other \mathbf{G}^s , $s > 0$, yields a **power substitution** in these conjugates.
- (*) J. Boman (2000) has given an expression relating ω_M , ω_N and $\omega_{M \cdot N}$. It seems that this proof contains a formal gap:
 $\lim_{p \rightarrow +\infty} (M_p)^{1/p} = +\infty = \lim_{p \rightarrow +\infty} (N_p)^{1/p}$ is not clear.

Weight functions - I

We consider weight functions in the sense of J. Jiménez-Garrido, J. Sanz, and G. S. (2019):

Definition

$\omega : [0, +\infty) \rightarrow [0, +\infty)$ is called a **weight function** if

- (*) ω is non-decreasing and
- (*) $\lim_{t \rightarrow +\infty} \omega(t) = +\infty$.

Our definition encompasses, in particular, weight functions in the sense of **Braun-Meise-Taylor**.

Weight functions - II

Some notation:

(*) Let σ, τ be weight functions. Write $\sigma \preceq \tau$ if

$$\tau(t) = O(\sigma(t)) \text{ as } t \rightarrow +\infty.$$

(*) σ and τ are called **equivalent**, denoted by $\sigma \sim \tau$, if $\sigma \preceq \tau$ and $\tau \preceq \sigma$.

(*) Write $\omega^\iota(t) := \omega(\frac{1}{t})$, $t > 0$.

(*) Write $\omega^{1/\alpha}(t) := \omega(t^{1/\alpha})$, $\alpha > 0$ and $t \geq 0$.

(*) Write $\text{id}^{1/\alpha}$ for $t \mapsto t^{1/\alpha}$, $\alpha > 0$ arbitrary.

(*) It is known: $\omega_{\mathbf{G}^s} \sim \text{id}^{1/s}$.

Generalized lower Legendre conjugate

Definition

Let σ, τ be given weight functions and put

$$\sigma \check{*} \tau(t) := \inf_{s>0} \{\sigma(s) + \tau(t/s)\}, \quad t \in [0, +\infty).$$

This generalizes the **lower Legendre conjugate/envelope**

$h_*(t) := \inf_{u>0} \{h(u) + tu\}$ as follows:

$$\sigma \check{*} \text{id}(t) = \inf_{s>0} \{\sigma(s) + t/s\} = \inf_{u>0} \{\sigma(1/u) + tu\} =: (\sigma^\iota)_*(t).$$

More generally,

$$\forall \alpha > 0 \ \forall t \geq 0 : \quad \sigma \check{*} \text{id}^{1/\alpha}(t) = (((\sigma^\iota)^\alpha)_*)^{1/\alpha}(t).$$

Generalized lower Legendre conjugate - properties

Lemma

Let $\sigma, \sigma_1, \tau, \tau_1$ be weight functions.

- (a) $\sigma, \tau \preceq \sigma \check{*} \tau$;
- (b) $\sigma \check{*} \tau$ is a weight function;
- (c) $\check{*}$ is commutative.
- (d) If $\sigma \preceq \sigma_1$ and $\tau \preceq \tau_1$, then $\sigma \check{*} \tau \preceq \sigma_1 \check{*} \tau_1$.

(*) J. Boman called $\omega_M \check{*} \omega_N$ “infimal convolution”.

(*) $\int \leftrightarrow \inf$ and $\check{*}$ can be defined in a wider context:
 $\sigma, \tau : (G_1, \odot_1) \rightarrow (G_2, \odot_2)$, then

$$\text{“} \sigma \check{*} \tau(t) := \inf_{u, s: u \odot_1 s = t} \{ \sigma(u) \odot_2 \tau(s) \} \text{.”}$$

Generalized upper Legendre conjugate

Definition

Let σ, τ be given weight functions and put

$$\widehat{\sigma \star \tau}(t) := \sup_{s \geq 0} \{\sigma(s) - \tau(s/t)\}, \quad t \in (0, +\infty).$$

A special case is (again):

$$\widehat{\sigma \star \text{id}}(t) = \sup_{s \geq 0} \{\sigma(s) - s/t\} =: \sigma^*(1/t) = (\sigma^*)^\iota(t), \quad t \in (0, +\infty),$$

with $\sigma^*(t) := \sup_{s \geq 0} \{\sigma(s) - ts\}$ denoting the **upper Legendre conjugate/envelope**. More generally,

$$\forall \alpha > 0 \ \forall t \geq 0 : \quad \widehat{\sigma \star \text{id}}^{1/\alpha}(t) = (((\sigma^\alpha)^*)^\iota)^{1/\alpha}(t).$$

Generalized upper Legendre conjugate - properties

Lemma

Let σ, τ be weight functions. Then

- (a) $\widehat{\sigma \star \tau}$ is non-decreasing and $\lim_{t \rightarrow +\infty} \widehat{\sigma \star \tau}(t) = +\infty$.
- (b) $\widehat{\sigma \star \tau} \preceq \sigma$
- (c) $\lim_{t \rightarrow 0} \widehat{\sigma \star \tau}(t) = \lim_{s \rightarrow 0} \sigma(s) - \tau(s) = \sigma(0) - \tau(0)$ and put $\widehat{\sigma \star \tau}(0) := \sigma(0) - \tau(0)$.

But $\widehat{\sigma \star \tau}$ is in general **not a weight function**: $0 \leq \widehat{\sigma \star \tau}(t) < +\infty$ for some/any $t \in [0, +\infty)$ is not clear.

To ensure $0 \leq \widehat{\sigma \star \tau}(t)$ for all t it suffices to assume $\tau(0) = 0$.

On the well-definedness of the upper conjugate - I

Lemma

Let σ and τ be weight functions and $t_0 \in (0, +\infty]$. Consider the following assertions:

(i)

$$\sup_{0 < t < t_0} \limsup_{u \rightarrow +\infty} \frac{\sigma(tu)}{\tau(u)} < 1.$$

(ii) $\sigma \hat{\star} \tau(t) < +\infty$ holds for all $t \in [0, t_0)$; i.e.

$$\forall t \in (0, t_0) \exists D_t > 0 \forall s \geq 0 : \sigma(s) - \tau(s/t) \leq D_t. \quad (1)$$

(iii)

$$\sup_{0 < t < t_0} \limsup_{u \rightarrow +\infty} \frac{\sigma(tu)}{\tau(u)} \leq 1.$$

Then (i) \Rightarrow (ii) \Rightarrow (iii) is valid.

On the well-definedness of the upper conjugate - II

In order to ensure that $\widehat{\sigma \star \tau}$ is a weight function one shall assume that

- (A) $\tau(0) = 0$ and
- (B) (1) holds with $t_0 = +\infty$ and so $\widehat{\sigma \star \tau}(t) < +\infty$ for any $t > 0$.

If $\widehat{\sigma \star \sigma}$ is well-defined, then

$$\forall t > 0 : \lim_{u \rightarrow +\infty} \frac{\sigma(tu)}{\sigma(u)} = 1,$$

which precisely means that σ is **slowly varying**.

On the well-definedness of the upper conjugate - III

Proposition

Let σ be a weight function and $\alpha > 0$. Then the following are equivalent:

- (i) $\widehat{\sigma \star \text{id}}^{1/\alpha}(t) < +\infty$ for all $t \in (0, +\infty)$.
- (ii) $\sigma(s) = o(s^{1/\alpha})$ as $s \rightarrow +\infty$.

Note: $\text{id}^{1/\alpha}(0) = 0$ is clear.

More generally, one can show:

On the well-definedness of the upper conjugate - IV

Proposition

Let σ, τ be weight functions.

(i) If either σ or τ satisfies

$$\omega(2t) = O(\omega(t)), \quad t \rightarrow +\infty,$$

then $\sigma(s) = o(\tau(s))$ as $s \rightarrow +\infty$ implies $\widehat{\sigma \star \tau}(t) < +\infty$ for all $t \in (0, +\infty)$.

(ii) If either σ or τ satisfies

$$\exists H \geq 1 \quad \forall t \geq 0 : \quad 2\omega(t) \leq \omega(Ht) + H,$$

then $\widehat{\sigma \star \tau}(t) < +\infty$ for all $t \in (0, +\infty)$ implies $\sigma(s) = o(\tau(s))$ as $s \rightarrow +\infty$.

Limiting example

Example

Consider the weight function \log_+ :

$$\log_+(t) := 0, \quad t \in [0, 1), \quad \log_+(t) := \log(t), \quad t \geq 1.$$

Then

$$\log_+ \circ \log_+ = \log_+, \quad \log_+ \widehat{\star} \log_+ = \log_+.$$

Note: \log_+ corresponds to ω_M when M is such that $M_p = +\infty$ for all sufficiently large p - so formally **not a weight sequence** (G.S., 2020).

Growth indices (J. Jiménez-Garrido, J. Sanz, G. S. (2019))

Let $\omega : [0, +\infty) \rightarrow [0, +\infty)$ be a weight function and $\gamma > 0$.

(*) ω has $(P_{\omega, \gamma})$ if

$$\exists K > 1 : \limsup_{t \rightarrow +\infty} \frac{\omega(K^\gamma t)}{\omega(t)} < K.$$

(*) Then put

$$\gamma(\omega) := \sup\{\gamma > 0 : (P_{\omega, \gamma}) \text{ is satisfied}\}.$$

(*) Analogously, ω has $(\bar{P}_{\omega, \gamma})$ if

$$\exists A > 1 : \liminf_{t \rightarrow +\infty} \frac{\omega(A^\gamma t)}{\omega(t)} > A.$$

(*) Then put

$$\bar{\gamma}(\omega) := \inf\{\gamma > 0 : (\bar{P}_{\omega, \gamma}) \text{ is satisfied}\}.$$

(*) $(0 \leq) \gamma(\omega) \leq \bar{\gamma}(\omega)$ holds.

$\check{\times}$ and growth indices

Theorem

Let σ, τ be weight functions.

(i) If $\gamma(\sigma), \gamma(\tau) > 0$, then

$$\gamma(\sigma) + \gamma(\tau) \leq \gamma(\sigma \check{\times} \tau).$$

(ii) If $\bar{\gamma}(\sigma), \bar{\gamma}(\tau) < +\infty$, then

$$\bar{\gamma}(\sigma \check{\times} \tau) \leq \bar{\gamma}(\sigma) + \bar{\gamma}(\tau).$$

$\widehat{\star}$ and growth indices

Theorem

Let σ, τ be weight functions such that $\tau(0) = 0$ and $\sigma \widehat{\star} \tau$ is well-defined.

(i) If $\gamma(\sigma) > 0$ and $\bar{\gamma}(\tau) < +\infty$, then

$$\gamma(\sigma) \leq \gamma(\sigma \widehat{\star} \tau) + \bar{\gamma}(\tau).$$

(ii) If $0 < \gamma(\tau) \leq \bar{\gamma}(\sigma) < +\infty$, then

$$\bar{\gamma}(\sigma \widehat{\star} \tau) + \gamma(\tau) \leq \bar{\gamma}(\sigma).$$

Basic notation and conditions - I

Let $\mathbf{M} = (M_p)_{p \in \mathbb{N}} \in \mathbb{R}_{>0}^{\mathbb{N}}$.

(*) \mathbf{M} is **log-convex** (H. Komatsu's condition (M.1)), if

$$\forall p \in \mathbb{N}_{>0} : M_p^2 \leq M_{p-1} M_{p+1}.$$

(*) Set

$$\mathbf{M}_\iota := \liminf_{p \rightarrow +\infty} \left(\frac{M_p}{M_0} \right)^{1/p} = \liminf_{p \rightarrow +\infty} (M_p)^{1/p}.$$

(*) If \mathbf{M} is log-convex, then

$$\lim_{p \rightarrow +\infty} \left(\frac{M_p}{M_0} \right)^{1/p} = \mathbf{M}_\iota \in (0, +\infty].$$

(*) In this situation, the case $\mathbf{M}_\iota \neq +\infty$ is non-standard.

Basic notation and conditions - II

(*) Write $\mathbf{M} \preceq \mathbf{N}$ if

$$\sup_{p \in \mathbb{N}_{>0}} \left(\frac{M_p}{N_p} \right)^{1/p} < +\infty.$$

(*) Write $\mathbf{M} \lhd \mathbf{N}$ if

$$\lim_{p \rightarrow +\infty} \left(\frac{M_p}{N_p} \right)^{1/p} = 0.$$

Associated (weight) function

Definition

The **associated function** $\omega_{\mathbf{M}} : [0, +\infty) \rightarrow [0, +\infty) \cup \{+\infty\}$ is given as follows (use the convention $0^0 := 1$):

$$\omega_{\mathbf{M}}(t) := \sup_{p \in \mathbb{N}} \log \left(\frac{M_0 t^p}{M_p} \right), \quad t \geq 0.$$

Lemma

Let $\mathbf{M} \in \mathbb{R}_{>0}^{\mathbb{N}}$ be given.

(i) $\mathbf{M}_t < +\infty$ implies

$$\forall t > \mathbf{M}_t : \quad \omega_{\mathbf{M}}(t) = +\infty.$$

(ii) If $\lim_{p \rightarrow +\infty} (M_p)^{1/p} = +\infty$, then $\omega_{\mathbf{M}}(t) < +\infty$ for all $t \geq 0$.

Characterization of well-definedness

Proposition

Let $\mathbf{M}, \mathbf{N} \in \mathbb{R}_{>0}^{\mathbb{N}}$, assume that \mathbf{N} is log-convex, so $\mathbf{N}_t \in (0, +\infty]$.

The following are equivalent:

(i)

$$\forall t \geq 0 \exists D_t \geq 1 \forall u \in [0, \mathbf{N}_t] : \omega_{\mathbf{M}}(tu) \leq \omega_{\mathbf{N}}(u) + D_t.$$

(ii) $\mathbf{N} \triangleleft \mathbf{M}$ holds.

Corollary

Let $\mathbf{M} \in \mathbb{R}_{>0}^{\mathbb{N}}$ be log-convex and such that $\mathbf{M}_t = +\infty$. Then $\widehat{\omega_{\mathbf{M}} \star \omega_{\mathbf{M}}}$ is not well-defined.

Main theorem for the lower conjugate

Theorem

Let \mathbf{M}, \mathbf{N} be log-convex. Then

$$\forall t \in [0, \mathbf{M}_t \cdot \mathbf{N}_t) : \quad \omega_{\mathbf{M} \cdot \mathbf{N}}(t) = \omega_{\mathbf{M}} \check{*} \omega_{\mathbf{N}}(t),$$

with the natural convention $\mathbf{M}_t \cdot \mathbf{N}_t = +\infty$ if either $\mathbf{M}_t = +\infty$ or $\mathbf{N}_t = +\infty$.

Consequence (recall the formula for the convolution):

- (*) “Easy modifications for weight sequences correspond to complicated modifications for (associated) weight functions”
- (*) “Complicated modifications for weight sequences correspond to easy modifications for (associated) weight functions”

Main theorem for the upper conjugate

Theorem

Let log-convex sequences \mathbf{M}, \mathbf{N} be given such that

- (a) $\mathbf{M}_\iota = +\infty = \mathbf{N}_\iota$,
- (b) $\mathbf{N} \triangleleft \mathbf{M}$.

Then

$$\forall t \in [0, +\infty) : \omega_{\mathbf{M}} \widehat{\star} \omega_{\mathbf{N}}(t) \leq \omega_{\frac{\mathbf{M}}{\mathbf{N}}}(t)$$

and, if $\frac{\mathbf{M}}{\mathbf{N}}$ is even *log-convex*, then equality holds for all $t \in [0, +\infty) = [0, \frac{\mathbf{M}}{\mathbf{N}}_\iota)$.

If (b) is replaced by the weaker relation

- (c) $\mathbf{N} \preceq \mathbf{M}$,

then one has to restrict to $t \in [0, \frac{\mathbf{M}}{\mathbf{N}}_\iota)$.

Upper vs. lower conjugate - Main result

Theorem

Let log-convex sequences \mathbf{M}, \mathbf{N} be given.

(i) If $\mathbf{N}_\iota = +\infty$, then

$$\forall t \in [0, \mathbf{M}_\iota) : (\omega_{\mathbf{M}} \check{*} \omega_{\mathbf{N}}) \widehat{*} \omega_{\mathbf{N}}(t) = \omega_{\mathbf{M}}(t),$$

and if $\mathbf{M}_\iota = +\infty$, then

$$\forall t \in [0, \mathbf{N}_\iota) : (\omega_{\mathbf{M}} \check{*} \omega_{\mathbf{N}}) \widehat{*} \omega_{\mathbf{M}}(t) = \omega_{\mathbf{N}}(t).$$

(ii) Assume that $\mathbf{M}_\iota = +\infty$, $\mathbf{N} \preceq \mathbf{M}$, and that $\frac{\mathbf{M}}{\mathbf{N}}$ is log-convex.
Then we obtain

$$\forall t \in [0, +\infty) : \omega_{\mathbf{M}}(t) = \omega_{\mathbf{N}} \check{*} (\omega_{\mathbf{M}} \widehat{*} \omega_{\mathbf{N}})(t) = (\omega_{\mathbf{M}} \widehat{*} \omega_{\mathbf{N}}) \check{*} \omega_{\mathbf{N}}(t).$$

Definitions and notions - I

- (a) Let $\omega : [0, +\infty) \rightarrow [0, +\infty)$ be continuous, non-decreasing,
 $\omega(t) = 0$ for all $t \in [0, 1]$.
- (b) $\log(t) = o(\omega(t))$ as $t \rightarrow +\infty$.
- (c) $\varphi_\omega : t \mapsto \omega(e^t)$ is convex.

Introduce the set (of basic weight functions in sense of
Braun-Meise-Taylor):

$$\mathcal{W}_0 := \{\omega : [0, \infty) \rightarrow [0, \infty) : \omega \text{ satisfies (a), (b), (c)}\}.$$

Let $\omega \in \mathcal{W}_0$ and consider the **Legendre-Fenchel-Young-conjugate**

$$\varphi_\omega^*(x) := \sup\{xy - \varphi_\omega(y) : y \geq 0\}, \quad x \geq 0.$$

Definitions and notions - II

(*) Associate the **weight matrix** $\mathcal{M}_\omega := \{\mathbf{W}^{(\ell)} : \ell > 0\}$ by

$$W_p^{(\ell)} := \exp\left(\frac{1}{\ell}\varphi_\omega^*(\ell p)\right).$$

(*) Properties for ω transfer to \mathcal{M}_ω - and vice versa via **exploiting (c)**.

(*) If in addition

$$(\omega_1) : \quad \omega(2t) = O(\omega(t)), \quad t \rightarrow +\infty,$$

then weighted spaces defined via ω can be described equivalently via \mathcal{M}_ω .

(*) $\gamma(\omega) > 0$ if and only if (ω_1) holds.

(*) Indeed, for considering φ_ω^* , defining \mathcal{M}_ω and the corresponding spaces, **(c) is not necessary**.

Products and quotients of weight matrices

Let $\sigma, \tau \in \mathcal{W}_0$ be given with associated matrices \mathcal{M}_σ , \mathcal{M}_τ and $\mathbf{N} \in \mathbb{R}_{>0}^{\mathbb{N}}$. Introduce:

(*)

$$\mathcal{M}_\sigma \cdot \mathcal{M}_\tau := \{\mathbf{S}^{(\ell)} \cdot \mathbf{T}^{(\ell)} : \ell > 0\},$$

(*)

$$\mathcal{M}_\sigma \cdot \mathbf{N} := \{\mathbf{S}^{(\ell)} \cdot \mathbf{N} : \ell > 0\},$$

(*)

$$\frac{\mathcal{M}_\sigma}{\mathcal{M}_\tau} := \left\{ \frac{\mathbf{S}^{(\ell)}}{\mathbf{T}^{(\ell)}} : \ell > 0 \right\},$$

(*)

$$\frac{\mathcal{M}_\sigma}{\mathbf{N}} := \left\{ \frac{\mathbf{S}^{(\ell)}}{\mathbf{N}} : \ell > 0 \right\}.$$

First main result(s) - lower conjugate

Theorem

Let $\sigma, \tau \in \mathcal{W}_0$ be given with associated matrices $\mathcal{M}_\sigma, \mathcal{M}_\tau$. If either σ or τ satisfies in addition (ω_1) , then as l.c.v.s.

$$\forall \ell, j > 0 : \quad \mathfrak{F}[\mathcal{M}_\sigma \cdot \mathcal{M}_\tau] = \mathfrak{F}[\omega_{S(\ell), T(j)}] = \mathfrak{F}[\sigma \check{*} \tau] \cdot$$

Corollary

Let $\sigma \in \mathcal{W}_0$ be given with associated matrix \mathcal{M}_σ and let $\alpha > 0$. Then, for all $\ell > 0$ as l.c.v.s. we get

$$\begin{aligned} \mathfrak{F}[\mathcal{M}_\sigma \cdot \mathbf{G}^\alpha] &= \mathfrak{F}[\omega_{S(\ell), \mathbf{G}^\alpha}] = \mathfrak{F}[\omega_{S(\ell)} \check{*} \omega_{\mathbf{G}^\alpha}] = \mathfrak{F}[\sigma \check{*} \omega_{\mathbf{G}^\alpha}] \\ &= \mathfrak{F}[\sigma \check{*} \text{id}^{1/\alpha}] = \mathfrak{F}[(((\sigma^\ell)^\alpha)_*)^{1/\alpha}] \cdot \end{aligned}$$

- (*) Here, $\mathfrak{F} \in \{\mathcal{E}, \mathcal{B}, \mathcal{A}, \mathcal{S}, \Lambda, \mathcal{F}\}$ (weighted categories).
- (*) $[\cdot]$ is a uniform notation meaning either the **Roumieu case** $\{\cdot\}$ or the **Beurling case** (\cdot) .
- (*) For any $\omega \in \mathcal{W}_0$ consider the Fréchet space

$$\mathcal{S}_{(\omega)}(\mathbb{R}) := \{f \in \mathcal{E}(\mathbb{R}) : \sup_{x \in \mathbb{R}, j, k \in \mathbb{N}} \frac{(1 + |x|)^k |f^{(j)}(x)|}{W_{j+k}^{(\ell)}} < +\infty, \forall \ell > 0\}.$$

- (*) For the corresponding associated matrix \mathcal{M}_ω set

$$\mathcal{S}_{(\mathcal{M}_\omega)}(\mathbb{R}) := \{f \in \mathcal{E}(\mathbb{R}) : \sup_{x \in \mathbb{R}, j, k \in \mathbb{N}} \frac{(1 + |x|)^k |f^{(j)}(x)|}{h^{j+k} W_{j+k}^{(\ell)}} < +\infty, \forall \ell > 0 \text{ } \forall h > 0\}.$$

Second main result - upper conjugate

Theorem

Let $\omega \in \mathcal{W}_0$ be given and $\alpha > 0$. Assume:

- (i) There exists $\ell_0 > 0$ such that $\gamma(\mathbf{W}^{(\ell_0)}) > \alpha$ (growth index by V. Thilliez for sequences).
- (ii) $\omega(t) = o(t^{1/\alpha})$ as $t \rightarrow +\infty$.

Then, for all $c, \ell > 0$ it follows that as l.c.v.s.

$$\begin{aligned} \mathfrak{F}\left[\frac{\mathcal{M}_\omega}{\mathbf{G}^\alpha}\right] &= \mathfrak{F}[\omega_{\mathbf{W}^{(c\ell_0)}/\mathbf{G}^\alpha}] = \mathfrak{F}[\omega_{\mathbf{W}^{(\ell)}} \widehat{\star} \omega_{\mathbf{G}^\alpha}] = \mathfrak{F}[\omega \widehat{\star} \omega_{\mathbf{G}^\alpha}] \\ &= \mathfrak{F}[\omega \widehat{\star} \text{id}^{1/\alpha}] = \mathfrak{F}[((((\omega^\alpha)^*)^\iota)^{1/\alpha}), \end{aligned}$$

Corresponding result for $\frac{\mathcal{M}_\sigma}{\mathcal{M}_\tau}$ requires knowledge on the regularity of $\mathbf{S}^{(\ell)}/\mathbf{T}^{(\ell)} \rightsquigarrow$ new growth index $\gamma(\mathcal{M}_\omega)$ resp. $\gamma(\mathcal{M})$!

$\check{*}$ and the composition operator on Gelfand-Shilov-type classes

Let $\psi(x) := x^2 + \frac{1}{4}$, $x \in \mathbb{R}$, ψ_m denotes the m -th iteration of ψ and set $C_{\psi_m} : f \mapsto f \circ \psi_m$.

Theorem

Let $\sigma, \tau \in \mathcal{W}_0$, $0 < \alpha < 2$, $\mu \in \mathbb{C}$ with $|\mu| > 1$ and set

$R_\mu := \sum_{m=0}^{+\infty} \frac{C_{\psi_m}}{\mu^{m+1}}$ (i.e. $R_\mu = (\mu - C_\psi)^{-1}$). We assume that

- (a) $\gamma(\sigma) > 1$,
- (b) $\mathcal{M}_\sigma, \mathcal{M}_\tau$ are related by

$$\exists k_0 > 0 \ \forall \ell > 0 : \quad \mathbf{T}^{(k_0)} \preceq \mathbf{S}^{(\ell)}.$$

Then there exists $f \in \mathcal{S}_{(\sigma)}(\mathbb{R})$ such that

$$R_\mu(f) \notin \mathcal{S}_{(((\tau^\ell)^\alpha)_*)^{1/\alpha}}(\mathbb{R}) = \mathcal{S}_{(\tau \check{*} \text{id}^{1/\alpha})}(\mathbb{R}) = \mathcal{S}_{(\mathcal{M}_\tau \cdot \mathbf{G}^\alpha)}(\mathbb{R}).$$

$\widehat{\star}$ and the composition operator on Gelfand-Shilov-type classes

Theorem

Let $\sigma, \tau \in \mathcal{W}_0$, $0 < \alpha < 2$, $\mu \in \mathbb{C}$ with $|\mu| > 1$ and R_μ as before.

We assume:

- (a) There exists $\ell_0 > 0$ such that $\gamma(\mathbf{S}^{(\ell_0)}) > \alpha + 1$.
- (b) $\sigma(t) = o(t^{1/\alpha})$ as $t \rightarrow +\infty$.
- (c) $\mathcal{M}_\sigma, \mathcal{M}_\tau$ are related by

$$\exists k_0 > 0 \ \forall \ell > 0 : \quad \mathbf{T}^{(k_0)} \preceq \mathbf{S}^{(\ell)}.$$

Then there exists

$f \in \mathcal{S}_{(((\sigma^\alpha)^\star)^\iota)^{1/\alpha}}(\mathbb{R}) = \mathcal{S}_{(\sigma \widehat{\star} \text{id}^{1/\alpha})}(\mathbb{R}) = \mathcal{S}_{(\frac{\mathcal{M}_\sigma}{G^\alpha})}(\mathbb{R})$ such that
 $R_\mu(f) \notin \mathcal{S}_{(\tau)}(\mathbb{R})$.

Generalization of known result

These results are generalizing one of the main statements by H. Ariza, C. Fernández, and A. Galbis (2025) for **Gevrey weights**:

Let $d, d' > 1$ be given with $d < d' < d + 2$, set $\alpha := d' - d$.

(*) Apply the first result to $\sigma = \tau := \text{id}^{1/d}$, so

$$(((\sigma^\nu)^\alpha)_*)^{1/\alpha} = \text{id}^{1/d} \star \text{id}^{1/\alpha} \sim \omega_{\mathbf{G}^d} \star \omega_{\mathbf{G}^\alpha} = \omega_{\mathbf{G}^{d+\alpha}} = \omega_{\mathbf{G}^{d'}}.$$

(*) Apply the second result to $\sigma = \tau := \text{id}^{1/d'}$, so

$$(((\sigma^\alpha)^*)^\nu)^{1/\alpha} = \text{id}^{1/d'} \widehat{\star} \text{id}^{1/\alpha} \sim \omega_{\mathbf{G}^{d'}} \widehat{\star} \omega_{\mathbf{G}^\alpha} = \omega_{\mathbf{G}^{d'-\alpha}} = \omega_{\mathbf{G}^d}.$$

- (*) H. Ariza, C. Fernández, and A. Galbis, Iterates of composition operators on global spaces of ultradifferentiable functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A. Mat. RACSAM 119, art. no. 9, 2025.
- (*) J. Boman, Uniqueness and non-uniqueness for microanalytic continuation of ultradistributions, Contemp. Mathem. 251, 61-82, 2000
- (*) G. Schindl, Generalized upper and lower Legendre conjugates for weight functions, 2025, available online at
<https://arxiv.org/pdf/2505.07497.pdf>
- (*) G. Schindl, Generalized upper and lower Legendre conjugates for Braun-Meise-Taylor weight functions, 2025, available online at
<https://arxiv.org/pdf/2505.17725.pdf>