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Introduction & motivation - I

(∗) In the �eld of Functional Analysis several weighted spaces are
studied, e.g.:

(∗) Classes of ultradi�erentiable and ultraholomorphic functions,
weighted spaces of analytic functions (on C or D), weighted
spaces of globally de�ned functions of Gelfand-Shilov-type,
weighted spaces of sequences of complex numbers, ...

(∗) Usually, weights are expressed in terms of a weight sequence
M = (Mp)p∈N ∈ RN

>0 or in terms of a weight function
ω : [0,+∞)→ [0,+∞).
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Introduction & motivation - II

(∗) (Similar!) growth and regularity assumptions on M and ω are
required (and unavoidable).

(∗) Conditions on weights imply, or even characterize, (desired)
properties for the corresponding weighted classes.

(∗) Given M, then one can associate the (weight) function ωM (S.
Mandelbrojt).

(∗) Conversely, given ω, then one can associate a one-parameter
family of sequences W(`), ` > 0; i.e. a weight matrix (A.
Rainer & G.S.).
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Introduction & motivation - III

(∗) Modi�cations of sequences appear naturally: construct new
sequences out of given ones.

(∗) This gives a controlled transformation/modi�cation of
regularity measured in terms of weight sequences.

(∗) A well understood operation: Given M, N, then consider the
convolved sequence M ?N (H. Komatsu).

(∗) Another natural modi�cation: multiplying and dividing
sequences point-/component-wise.
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Introduction & motivation - IV

(∗) (Most) prominent: M 7→ M̂ := G1 ·M, M 7→ M̌ := M

G1
.

(∗) Gs := (p!s)p∈N shall denote the Gevrey-sequence with index

s > 0, and so G1 ·M = (p!Mp)p∈N,
M

G1
=
(
Mp

p!

)
p∈N

.

(∗) Note: M 7→ M̂ preserves or even increases regularity properties
for M, whereas M̌ might be �non-standard� even M behaves
�nice�: consider e.g. M ≡ Gs , 1 < s < 2.
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Questions (and goals) - I

(∗) How are ωM, ωM̂, ωM̌ related? So, how are these operations
e�ecting the associated (weight) function ωM?

(∗) Replace G1 by an arbitrary sequence N: Consider

M ·N := (MpNp)p∈N,
M

N
:=
(
Mp

Np

)
p∈N

and study the relation

between ωM, ωN and ωM·N, ωM
N

.

(∗) Again the situation is well-understood for the convolution:
ωM?N = ωM + ωN.
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Questions (and goals) - II

(∗) Introduce operations between abstractly weight functions σ
and τ yielding the analogous e�ect as multiplying/dividing
sequences for the associated weight functions.

(∗) Work in a general setting and �nd applications for this
approach.

(∗) Note: In general, M
N

can behave very irregular (oscillation) even
if both M and N satisfy many (strong) growth conditions.
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Known information

(∗) ω
M̂

corresponds to the lower Legendre conjugate/envelope of
ωM and ω

M̌
corresponds to the upper Legendre

conjugate/envelope.

(∗) These conjugates have been used for abstractly given weight
functions as well; e.g. for ultradi�erentiable almost analytic
extensions (H.-J. Petzsche & D. Vogt, 1984) and for extension
results in the ultraholomorphic setting (J. Jiménez-Garrido, J.
Sanz, and G. S., 2019).

(∗) Replacing G1 by some/any other Gs , s > 0, yields a power
substitution in these conjugates.

(∗) J. Boman (2000) has given an expression relating ωM, ωN and
ωM·N. It seems that this proof contains a formal gap:
limp→+∞(Mp)1/p = +∞ = limp→+∞(Np)1/p is not clear.
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Weight functions - I

We consider weight functions in the sense of J. Jiménez-Garrido, J.
Sanz, and G. S. (2019):

De�nition

ω : [0,+∞)→ [0,+∞) is called a weight function if

(∗) ω is non-decreasing and

(∗) limt→+∞ ω(t) = +∞.

Our de�nition encompasses, in particular, weight functions in the
sense of Braun-Meise-Taylor.
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Weight functions - II

Some notation:

(∗) Let σ, τ be weight functions. Write σ � τ if

τ(t) = O(σ(t)) as t → +∞.

(∗) σ and τ are called equivalent, denoted by σ ∼ τ , if σ � τ and
τ � σ.

(∗) Write ωι(t) := ω(1t ), t > 0.

(∗) Write ω1/α(t) := ω(t1/α), α > 0 and t ≥ 0.

(∗) Write id1/α for t 7→ t1/α, α > 0 arbitrary.

(∗) It is known: ωGs ∼ id1/s .
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Generalized lower Legendre conjugate

De�nition

Let σ, τ be given weight functions and put

σ?̌τ(t) := inf
s>0
{σ(s) + τ(t/s)}, t ∈ [0,+∞).

This generalizes the lower Legendre conjugate/envelope
h?(t) := infu>0{h(u) + tu} as follows:

σ?̌ id(t) = inf
s>0
{σ(s) + t/s} = inf

u>0
{σ(1/u) + tu} =: (σι)?(t).

More generally,

∀ α > 0 ∀ t ≥ 0 : σ?̌ id1/α(t) = (((σι)α)?)1/α(t).
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Generalized lower Legendre conjugate - properties

Lemma

Let σ, σ1, τ , τ1 be weight functions.

(a) σ, τ � σ?̌τ ;
(b) σ?̌τ is a weight function;

(c) ?̌ is commutative.

(d) If σ � σ1 and τ � τ1, then σ?̌τ � σ1?̌τ1.

(∗) J. Boman called ωM?̌ωN �in�mal convolution�.

(∗)
∫
↔ inf and ?̌ can be de�ned in a wider context:

σ, τ : (G1,�1)→ (G2,�2), then

“σ?̌τ(t) := inf
u,s:u�1s=t

{σ(u)�2 τ(s)}.′′
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Generalized upper Legendre conjugate

De�nition

Let σ, τ be given weight functions and put

σ?̂τ(t) := sup
s≥0
{σ(s)− τ(s/t)}, t ∈ (0,+∞).

A special case is (again):

σ?̂ id(t) = sup
s≥0
{σ(s)− s/t} =: σ?(1/t) = (σ?)ι(t), t ∈ (0,+∞),

with σ?(t) := sups≥0{σ(s)− ts} denoting the upper Legendre
conjugate/envelope. More generally,

∀ α > 0 ∀ t ≥ 0 : σ?̂ id1/α(t) = (((σα)?)ι)1/α(t).
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Generalized upper Legendre conjugate - properties

Lemma

Let σ, τ be weight functions. Then

(a) σ?̂τ is non-decreasing and limt→+∞ σ?̂τ(t) = +∞.

(b) σ?̂τ � σ
(c) limt→0 σ?̂τ(t) = lims→0 σ(s)− τ(s) = σ(0)− τ(0) and put

σ?̂τ(0) := σ(0)− τ(0).

But σ?̂τ is in general not a weight function: 0 ≤ σ?̂τ(t) < +∞ for
some/any t ∈ [0,+∞) is not clear.

To ensure 0 ≤ σ?̂τ(t) for all t it su�ces to assume τ(0) = 0.
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On the well-de�nedness of the upper conjugate - I

Lemma

Let σ and τ be weight functions and t0 ∈ (0,+∞]. Consider the
following assertions:

(i)

sup
0<t<t0

lim sup
u→+∞

σ(tu)

τ(u)
< 1.

(ii) σ?̂τ(t) < +∞ holds for all t ∈ [0, t0); i.e.

∀ t ∈ (0, t0) ∃ Dt > 0 ∀ s ≥ 0 : σ(s)− τ(s/t) ≤ Dt . (1)

(iii)

sup
0<t<t0

lim sup
u→+∞

σ(tu)

τ(u)
≤ 1.

Then (i)⇒ (ii)⇒ (iii) is valid.
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On the well-de�nedness of the upper conjugate - II

In order to ensure that σ?̂τ is a weight function one shall assume
that

(A) τ(0) = 0 and

(B) (1) holds with t0 = +∞ and so σ?̂τ(t) < +∞ for any t > 0.

If σ?̂σ is well-de�ned, then

∀ t > 0 : lim
u→+∞

σ(tu)

σ(u)
= 1,

which precisely means that σ is slowly varying.
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On the well-de�nedness of the upper conjugate - III

Proposition

Let σ be a weight function and α > 0. Then the following are

equivalent:

(i) σ?̂ id1/α(t) < +∞ for all t ∈ (0,+∞).

(ii) σ(s) = o(s1/α) as s → +∞.

Note: id1/α(0) = 0 is clear.

More generally, one can show:
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On the well-de�nedness of the upper conjugate - IV

Proposition

Let σ, τ be weight functions.

(i) If either σ or τ satis�es

ω(2t) = O(ω(t)), t → +∞,

then σ(s) = o(τ(s)) as s → +∞ implies σ?̂τ(t) < +∞ for all

t ∈ (0,+∞).

(ii) If either σ or τ satis�es

∃ H ≥ 1 ∀ t ≥ 0 : 2ω(t) ≤ ω(Ht) + H,

then σ?̂τ(t) < +∞ for all t ∈ (0,+∞) implies σ(s) = o(τ(s))
as s → +∞.
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Limiting example

Example

Consider the weight function log+:

log+(t) := 0, t ∈ [0, 1), log+(t) := log(t), t ≥ 1.

Then
log+ ?̌ log+ = log+, log+ ?̂ log+ = log+ .

Note: log+ corresponds to ωM when M is such that Mp = +∞ for
all su�ciently large p - so formally not a weight sequence (G.S.,
2020).
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Growth indices (J. Jiménez-Garrido, J. Sanz, G. S. (2019))

Let ω : [0,+∞)→ [0,+∞) be a weight function and γ > 0.

(∗) ω has (Pω,γ) if

∃ K > 1 : lim sup
t→+∞

ω(Kγt)

ω(t)
< K .

(∗) Then put

γ(ω) := sup{γ > 0 : (Pω,γ) is satis�ed}.

(∗) Analogously, ω has (Pω,γ) if

∃ A > 1 : lim inf
t→+∞

ω(Aγt)

ω(t)
> A.

(∗) Then put

γ(ω) := inf{γ > 0 : (Pω,γ) is satis�ed}.

(∗) (0 ≤)γ(ω) ≤ γ(ω) holds.
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?̌ and growth indices

Theorem

Let σ, τ be weight functions.

(i) If γ(σ), γ(τ) > 0, then

γ(σ) + γ(τ) ≤ γ(σ?̌τ).

(ii) If γ(σ), γ(τ) < +∞, then

γ(σ?̌τ) ≤ γ(σ) + γ(τ).
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?̂ and growth indices

Theorem

Let σ, τ be weight functions such that τ(0) = 0 and σ?̂τ is

well-de�ned.

(i) If γ(σ) > 0 and γ(τ) < +∞, then

γ(σ) ≤ γ(σ?̂τ) + γ(τ).

(ii) If 0 < γ(τ) ≤ γ(σ) < +∞, then

γ(σ?̂τ) + γ(τ) ≤ γ(σ).
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Basic notation and conditions - I

Let M = (Mp)p∈N ∈ RN
>0.

(∗) M is log-convex (H. Komatsu's condition (M.1)), if

∀ p ∈ N>0 : M2
p ≤ Mp−1Mp+1.

(∗) Set

Mι := lim inf
p→+∞

(
Mp

M0

)1/p

= lim inf
p→+∞

(Mp)1/p.

(∗) If M is log-convex, then

lim
p→+∞

(
Mp

M0

)1/p

= Mι ∈ (0,+∞].

(∗) In this situation, the case Mι 6= +∞ is non-standard.
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Basic notation and conditions - II

(∗) Write M � N if

sup
p∈N>0

(
Mp

Np

)1/p

< +∞.

(∗) Write M C N if

lim
p→+∞

(
Mp

Np

)1/p

= 0.
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Associated (weight) function

De�nition

The associated function ωM : [0,+∞)→ [0,+∞) ∪ {+∞} is given
as follows (use the convention 00 := 1):

ωM(t) := sup
p∈N

log

(
M0t

p

Mp

)
, t ≥ 0.

Lemma

Let M ∈ RN
>0 be given.

(i) Mι < +∞ implies

∀ t >Mι : ωM(t) = +∞.

(ii) If limp→+∞(Mp)1/p = +∞, then ωM(t) < +∞ for all t ≥ 0.
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Characterization of well-de�nedness

Proposition

Let M,N ∈ RN
>0, assume that N is log-convex, so Nι ∈ (0,+∞].

The following are equivalent:

(i)

∀ t ≥ 0 ∃ Dt ≥ 1 ∀ u ∈ [0,Nι) : ωM(tu) ≤ ωN(u) + Dt .

(ii) N CM holds.

Corollary

Let M ∈ RN
>0 be log-convex and such that Mι = +∞. Then

ωM?̂ωM is not well-de�ned.
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Main theorem for the lower conjugate

Theorem

Let M,N be log-convex. Then

∀ t ∈ [0,Mι ·Nι) : ωM·N(t) = ωM?̌ωN(t),

with the natural convention Mι ·Nι = +∞ if either Mι = +∞ or

Nι = +∞.

Consequence (recall the formula for the convolution):

(∗) �Easy modi�cations for weight sequences correspond to
complicated modi�cations for (associated) weight functions�

(∗) �Complicated modi�cations for weight sequences correspond to
easy modi�cations for (associated) weight functions�

Gerhard Schindl University of Vienna

Generalized upper and lower Legendre conjugates for weight functions



Introduction Upper and lower conjugate Weight sequence setting An application for BMT-weights Literature

Main theorem for the upper conjugate

Theorem

Let log-convex sequences M,N be given such that

(a) Mι = +∞ = Nι,

(b) N CM.

Then

∀ t ∈ [0,+∞) : ωM?̂ωN(t) ≤ ωM
N

(t)

and, if M
N

is even log-convex, then equality holds for all

t ∈ [0,+∞) = [0, M
N ι

).

If (b) is replaced by the weaker relation

(c) N �M,

then one has to restrict to t ∈ [0, M
N ι

).
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Upper vs. lower conjugate - Main result

Theorem

Let log-convex sequences M,N be given.

(i) If Nι = +∞, then

∀ t ∈ [0,Mι) : (ωM?̌ωN)?̂ωN(t) = ωM(t),

and if Mι = +∞, then

∀ t ∈ [0,Nι) : (ωM?̌ωN)?̂ωM(t) = ωN(t).

(ii) Assume that Mι = +∞, N �M, and that M
N

is log-convex.

Then we obtain

∀ t ∈ [0,+∞) : ωM(t) = ωN?̌(ωM?̂ωN)(t) = (ωM?̂ωN)?̌ωN(t).
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De�nitions and notions - I

(a) Let ω : [0,+∞)→ [0,+∞) be continuous, non-decreasing,
ω(t) = 0 for all t ∈ [0, 1].

(b) log(t) = o(ω(t)) as t → +∞.

(c) ϕω : t 7→ ω(et) is convex.

Introduce the set (of basic weight functions in sense of
Braun-Meise-Taylor):

W0 := {ω : [0,∞)→ [0,∞) : ω satis�es (a), (b), (c)}.

Let ω ∈ W0 and consider the Legendre-Fenchel-Young-conjugate

ϕ∗ω(x) := sup{xy − ϕω(y) : y ≥ 0}, x ≥ 0.
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De�nitions and notions - II

(∗) Associate the weight matrixMω := {W(`) : ` > 0} by

W
(`)
p := exp

(
1

`
ϕ∗ω(`p)

)
.

(∗) Properties for ω transfer toMω - and vice versa via exploiting
(c).

(∗) If in addition

(ω1) : ω(2t) = O(ω(t)), t → +∞,

then weighted spaces de�ned via ω can be described
equivalently viaMω.

(∗) γ(ω) > 0 if and only if (ω1) holds.

(∗) Indeed, for considering ϕ∗ω, de�ningMω and the
corresponding spaces, (c) is not necessary.
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Products and quotients of weight matrices

Let σ, τ ∈ W0 be given with associated matricesMσ,Mτ and
N ∈ RN

>0. Introduce:

(∗)
Mσ · Mτ := {S(`) ·T(`) : ` > 0},

(∗)
Mσ ·N := {S(`) ·N : ` > 0},

(∗)
Mσ

Mτ
:=

{
S(`)

T(`)
: ` > 0

}
,

(∗)
Mσ

N
:=

{
S(`)

N
: ` > 0

}
.
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First main result(s) - lower conjugate

Theorem

Let σ, τ ∈ W0 be given with associated matricesMσ,Mτ . If

either σ or τ satis�es in addition (ω1), then as l.c.v.s.

∀ `, j > 0 : F[Mσ ·Mτ ] = F[ω
S(`)·T(j) ] = F[σ?̌τ ].

Corollary

Let σ ∈ W0 be given with associated matrixMσ and let α > 0.
Then, for all ` > 0 as l.c.v.s. we get

F[Mσ ·Gα] = F[ω
S(`)·Gα ] = F[ω

S(`) ?̌ωGα ] = F[σ?̌ωGα ]

= F[σ?̌ id1/α] = F[(((σι)α)?)1/α].
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(∗) Here, F ∈ {E ,B,A,S,Λ,F} (weighted categories).

(∗) [·] is a uniform notation meaning either the Roumieu case {·}
or the Beurling case (·).

(∗) For any ω ∈ W0 consider the Fréchet space

S(ω)(R) :=

{f ∈ E(R) : sup
x∈R,j ,k∈N

(1 + |x |)k |f (j)(x)|
W

(`)
j+k

< +∞, ∀ ` > 0}.

(∗) For the corresponding associated matrixMω set

S(Mω)(R) :=

{f ∈ E(R) : sup
x∈R,j ,k∈N

(1 + |x |)k |f (j)(x)|
hj+kW

(`)
j+k

< +∞, ∀ ` > 0 ∀ h > 0}.
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Second main result - upper conjugate

Theorem

Let ω ∈ W0 be given and α > 0. Assume:

(i) There exists `0 > 0 such that γ(W(`0)) > α (growth index by

V. Thilliez for sequences).

(ii) ω(t) = o(t1/α) as t → +∞.

Then, for all c , ` > 0 it follows that as l.c.v.s.

F[Mω
Gα ] = F[ω

W
(c`0)/Gα

] = F[ω
W(`) ?̂ωGα ] = F[ω?̂ωGα ]

= F[ω?̂ id1/α] = F[(((ωα)?)ι)1/α],

Corresponding result for Mσ
Mτ

requires knowledge on the regularity

of S(`)/T(`)  new growth index γ(Mω) resp. γ(M)!
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?̌ and the composition operator on Gelfand-Shilov-type
classes

Let ψ(x) := x2 + 1
4
, x ∈ R, ψm denotes the m-th iteration of ψ

and set Cψm : f 7→ f ◦ ψm.

Theorem

Let σ, τ ∈ W0, 0 < α < 2, µ ∈ C with |µ| > 1 and set

Rµ :=
∑+∞

m=0
Cψm
µm+1 (i.e. Rµ = (µ− Cψ)−1). We assume that

(a) γ(σ) > 1,

(b) Mσ,Mτ are related by

∃ k0 > 0 ∀ ` > 0 : T
(k0) � S(`).

Then there exists f ∈ S(σ)(R) such that

Rµ(f ) /∈ S((((τ ι)α)?)1/α)(R) = S(τ ?̌ id1/α)(R) = S(Mτ ·Gα)(R).
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?̂ and the composition operator on Gelfand-Shilov-type
classes

Theorem

Let σ, τ ∈ W0, 0 < α < 2, µ ∈ C with |µ| > 1 and Rµ as before.

We assume:

(a) There exists `0 > 0 such that γ(S(`0)) > α + 1.

(b) σ(t) = o(t1/α) as s → +∞.

(c) Mσ,Mτ are related by

∃ k0 > 0 ∀ ` > 0 : T
(k0) � S(`).

Then there exists

f ∈ S((((σα)?)ι)1/α)(R) = S(σ?̂ id1/α)(R) = S(Mσ
Gα

)(R) such that

Rµ(f ) /∈ S(τ)(R).
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Generalization of known result

These results are generalizing one of the main statements by H.
Ariza, C. Fernández, and A. Galbis (2025) for Gevrey weights:

Let d , d ′ > 1 be given with d < d ′ < d + 2, set α := d ′ − d .

(∗) Apply the �rst result to σ = τ := id1/d , so

(((σι)α)?)1/α = id1/d ?̌ id1/α ∼ ωGd ?̌ωGα = ωGd+α = ω
Gd′ .

(∗) Apply the second result to σ = τ := id1/d
′
, so

(((σα)?)ι)1/α = id1/d
′
?̂ id1/α ∼ ω

Gd′ ?̂ωGα = ω
Gd′−α = ωGd .
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