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Abstract

e We introduce Floquet-transform techniques to study Bergman
spaces, Bergman kernels and Toeplitz operators T, on unbounded
periodic planar domains [1, which are defined as the union of infinitely
many copies of the translated, bounded periodic cell w.

e The Floquet-transform yields a connection between the Bergman
projection Pp : L?(M) — A2(MN) and a family of Bergman-type projections
P,, in the space L?(w), where € [—, 7] is the so-called Floquet
variable. We get an explicit formula for the corresponding kernels.

o We study Toeplitz operators T, : A%(I) — A?(I) with periodic
symbols. Floquet-transform establishes a connection of T with family of
Toepliz-type operators T,,, n € [—m, x|, in the cell w. In particular, we
prove the "spectral band formula”, which describes the essential
spectrum of T in terms of the spectra of the operators T, ,,.
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Abstract

e As an example and application, we consider (simply connected)
periodic domains [y containing thin geometric structures and show how
to construct a Toeplitz operator T, : A%(My,) — A?(M}) such that, for
any N € N,

The essential spectrum of T, contains N disjoint components
which approximatively coincide with any given finite set xi,...,xy
of real numbers.

e Using a Riemann mapping from the disc D onto I, one can then find a
Toeplitz operator T : A%(D) — A2?(D) with a bounded symbol and with
the same spectral properties as T,.

J. Taskinen: On the Bergman projection and kernel in periodic planar
domains. Proceedings of IWOTA 2022 Lancaster.

J. Taskinen: On Bergman-Toeplitz operators in periodic planar domains.
Transactions LMS (2025).
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Bergman projection, Toeplitz operator

Given a domain € in the complex plane C, we denote by L?(Q2) the
Lebesgue-Hilbert space with respect to the (real) area measure dA and
by A%(Q) the corresponding Bergman space, which is the closed subspace
consisting of analytic functions.

We denote by Pq the orthogonal projection from L?(2) onto A%(Q). It
can always written with the help of the Bergman kernel Ko : 2 x Q — C,

Paf(z) = /KQ(; W)F(W)dA(w), z€Q, fe [2(Q).
Q
Given a € L>(Q), the Toeplitz operator T, with symbol a is defined by

T.f(z2) = PaM.f(z) = /KQ(Z7 w)a(w)f(w)dA(w), z€Q, Ac [3(Q).
Q
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Periodic domain and cell

e Periodic cell @ C] — 3, 3[x] — M, M[C R? = C for some M >0, see
picture below. Translates of w are w,, = w + m, where me€ Z C C,

e Periodic domain [1 is the interior of the set

U cl(wm).

meZ

e Some geometric assumptions: to and [ are Lipschitz domains such
that the boundaries dw and JI1 are in addition piecewise smooth.
Excludes cusps both in @ and I1. Consequently, Ow is a Jordan curve,
polynomials form a dense subspace of the Bergman space A?(w).
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Periodic domain and cell
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Floquet transform in L2(I)

The definition of the Floquet transform reads for f € L?(IN) as

~

1 .
Ff(z,n) =f(z,n) = Vo Z e ""f(z+m), zew, ne[-m,mn],
meZ

F:L2(N) = L2(—m,m (@) .

Here, L?(—m, m; L?(w)) is the vector valued L?-space (or Bochner space)
on [—, m] of functions g = g(z,7) with values g(-,n) in L?(w), with
norm

lgll? = / 18C, 7)oy

The series converges in L?(—m, 7; L2(ww)), thus pointwise for a.e. 7, z etc.

F is a unitary map from L?(N) onto L?(—n,; L?(w)) with inverse

1
Flg(z) = Wors / e'lfezlng (7 _ [Rez],n)dn, zeTl. (1)

™7 mid = =
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Floquet transform in A%(I)

The Floquet transform is simply defined in A?(T) C L3(M) as the
restriction. Then, the question is about its range.

Floquet transform F maps A*(N) onto L*(—m,m; AZ(w)). Its inverse
F~t: 12(—m,; A2(w)) — A*(N) is given by the formula (1).

e For ) € [-m, 7], we denote by A? __ (w) the subspace of A*(w) of

such f which can be extended as analytic functions to a neighborhood in
M of cl(z) N M and satisfy the boundary condition

. 1
f(% +iy) = e”’f(—i +iy) foralla<y<b.

o We define the space A2(w) as the closure of A2 (@) in A*(w).
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Projections in I1 and in @

e We denote by P, : L*(w) — AZ(w) the orthogonal projection with
kernel K, : w x @w — C,

Pnf(z):/ Ky (z, w)f(w)dA(w).

(-,m)) is the orthogonal projection from
L?(—m, m; L?(w)) onto L2(—7r,7T;A$](w)) .

The map Pf(z,n) = (P,f

Taking the Floquet transform yields a connection between the Bergman

projections in w and 1.

The Bergman projection Pr : L2(M) — A?(N) equals Pn = F~1PF. The
kernel Kn can be written as

1 us
Kn(z,w) = Z/ eMRezl=[Rewl) i (7 _ [Rez], w — [Rew])dn
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Kernel in 1 in terms of a conformal mapping

If the domain I is simply connected then its Bergman kernel equals
Kn(z,w) = C2n Kn(z, w) sech? (C,(p(2) — p(w)),
where C, = 2 /(2log p) and

Rﬂ(z, W) _ ei27r(zf\',a(z)7v_v+<,a(w))@/(eiQWZ)W
For the strip ¥ = (—o0, 00) x (—7,7) we obtain (known)
Ks(z,w) = (167) sech? ((z—w)/4).
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Toeplitz-type operators on A%(w)

From now on we consider Toeplitz operators T, : A%(I) — A%(IN) with
periodic symbols a € L>°(I): we assume

a(z)=a(z+1) forae zell.

o We define for all ny € [—7, «] the bounded, Toeplitz-type operator
Tom t Aj(@) = Al(w@),

Tonf = Py(al=f)
e In the Bochner space, T, : L*(—m,m; A% (w)) — L*(—m, m; A2 (w)),
T f(an) = Ta»nf('777)a

The following is an immediate consequence of the definitions.

T.f = FVT,Ff for all f € A%(N).
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"Spectral band formula”

We denote the spectrum of T, in the space A (w) by o(Ts,).

The essential spectrum of the Toeplitz-operator T, : A%(M) — A?(N) can
be described by the formula

Uess(Ta) = U U( Ta,n)-

ne€[—m,x]

Moreover, there holds o(T,) = 0ess(Ta)-

(An analogous formula is classical in spectral problems for periodic
elliptic operators which are in particular self-adjoint, unbounded
operators in L?-spaces; S.A.Nazarov, P.Kuchment and many others.)

To prove the inclusion ” C” one first shows that the set

Y = Upe[—n,n0(Tay) is closed. Then, if A € C\ ¥, its distance to the

spectra of all T, ,, is above some small positive number, and it is not

difficult to construct a bounded inverse for the operator T, — AId. We get
Oess(Ta) Co(T,) C X
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" Spectral band formula”: on the proof.

To prove ess(Ta) O Upe—n,n 0(Tan)  we construct a Weyl
singular sequence.

If H is Hilbert space, T € L(H) and A € C, then X € 0ess(T), if and only
if there exists a Weyl singular sequence, which is a sequence (h,)52, C H
with no convergent subsequences such that || h,||g = 1 for all n, and

lim || Thy — Al =0
n—o00

Assume A\ € ¥ = Uye[—r x10(Tay) and for example that A is an
eigenvalue of T, , with a fixed v € [—m, 7]. Then, we pick up an
eigenfunction f € A2(w), extend it suitably to an element f ® x, of
L?(—m,m; A2(w)) and use the inverse Floquet transform to define an
element g, ;= F71(f ® x,,) of A%(M). (This is however not an
eigenfunction of T,. The functions x, are approximations of the Dirac
measure of the point v € [—7,7])

The singular sequence is obtained by taking "sparse” translations of g,.
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Toeplitz operator on D with interesting essential spectra

We start with a (compact, self-adjoint) Toeplitz operator
Ty : A%(D) — A?(ID) which has a radial, real-valued, bounded symbol,
compactly supported in D. Then, T, is the Taylor coefficient multiplier

[ee] [e'e) L
Ty : Z f,z" — Z bnfoz", where b, =71 (n+ 1)/ b(r)r2"dr
n=0 n=0 0

Since the normalized monomials form an orthonormal basis of A%(D), we
get that

o(Ty) = (J{bn} CR

neN

Goal: Construct a Toepliz operator T, on a periodic domain, the
essential spectrum of which is approximatively the same as o(Tp). In
particular, gess(T,) should contain many disjoint components. (cf.
C.Sundberg, D.Zheng, Indiana University Mathematics Journal 59
(2010))
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Toeplitz operator on D with interesting essential spectra
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We consider a family of periodic domains I, h > 0, with thin ligaments.

e With dilation 7: B(0, Ry) = D, Ry € (1/4,1/2), we redefine b as bor
and extend b to wp, as zero. We define a periodic symbol a (uniquely) on
I such that it coincides with b on oy,
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Toeplitz operator on D with interesting essential spectra

e For small h > 0, wp, is a small domain perturbation of B(0, Ry) =
o(Tan) = o(Te) V=

Uess(Ta) = U U( Ta,n) ~ 0( Tb)

ne[—m,m)
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The result on periodic domains

More precisely, the previous idea leads to the following result.

Let b € L>°(D) be real valued and its support contained in Dr for some
R < 1. Let the eigenvalues \,, n € N, of T, : A>(D) — A%(D) be
indexed such that

Al = Ao = [As[ = -

If N € N and § > 0 are arbitrary numbers such that |An| > [Ayt1| + 20,
then for every small enough € > 0 there exists a simply connected
periodic domain Il C C and a bounded Toeplitz operator

Ta: A2(N) — A%(N) such that

Uess(Ta) N B()\n,'g) 7é OVn < N,
and

dist (Tess(Ta) N Gz, Oess(Ta) \ G2) > 6, where G. = | | B(An, €).
n<N
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Toeplitz operator on D with interesting essential spectra

By applying the Riemann mapping v : D — T1, the previous result implies
the following version concerning Toeplitz operators on the disc.

Given K € N and any finite sequence of distinct real numbers

X1 > ... > xk one can find § > 0 such that for all small enough ¢ > 0,
there exists a bounded Toeplitz-operator T, : A%(D) — A%(D) with a real
valued symbol a € L>°(D) and the properties

Uess(Ta) N B(Xn,g) 7& 0Vn <K
and

dist (Gess(Ta) N Uz, Gess(Ta) \ Uz) > 6, where U, = U B(xn,€).
n<K

e In particular, given K, one can construct such an operator T, with at
least K disjoint components of gess( T2).

e We expect the components to be continua in stead of discrete sets, but
this remains unproven. (The corresponding question in elliptic PDE's is
classical and quite deep.)
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Lemma on almost eigenvalues and -vectors

In the proofs of the previous theorems one uses,among other things, the
following well-known lemma on almost eigenvalues and -vectors.

Let K : H — H be a compact self-adjoint operator in a Hilbert-space H
and let y € R. If there are f € H with ||f||y =1 and 6 > 0 such that

IKF — pfll <9,

then K has an eigenvalue X € [ — 9, pu + ).

.
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Bergman kernel in the simply connected case

We return to the considerations on the Bergman kernel, assume that w is
simply connected and show the connection of the kernel K, with a
certain Riemann mapping.

The exponential map E : z — ™ maps the set @ U J. U J_ onto the
doubly connected domain D, which is contained in an annulus,

Dc{zeC: po<lz| <pi}.
Also, there exista a conformal mapping
¢p:D—>A={zeC:1/p<|z| <p}

where the number p > 1 is uniquely determined by D. Denote ¢ = ¢~ 1.
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Domains and mappings

N R =
* 4\ \L/

‘ L% SU 94‘
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Many domains, weights and spaces
We denote D = E(w) and A| = ¢(D)) and define on A the weight

= [v'(z )|2 =v(2)v(z) wi v(z :iw’(z)_
V) = e V) M = oy

note that v is analytic on A|. We denote by A%/m(/h) the closed
subspace spanned by functions

27/CMg(z), g€ AY(A)

(/) The composition operator I : f — f o L o) is a unitary isomorphism
L?(w) — L5,(A) and A% (w) — A, (A)). (Here L= (27i)~log z)

(if) An orthonormal basis of A%,W(A‘) is formed by functions.
fon(2) = Crnz™ "/ CTv(2)7, nel,

where C, ,, are the normalization constants,

2 _ 2 2(nt1)+n/x

_ _ —2(n+1)—77/7r.
o 2(n+1)+n/ﬁ(p p )

.

= . =
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Kernel K,

The kernel K, 4 of the orthogonal projection L3, (A) — A}, (A)), i.e.,
f fA Ky, a(-, w)f(w)dA(w) is

Ky, a(z, w) Zf’” V(W).

n€Z
We denote  K(z, w) = 4227z g/ (£i277) g/ (e2mw)
and define the conformal mapping ¢ : [1 — S, where S is the strip

S =(—00,00) x (—(2m) "logp, (2m) *log p) and

o(z) = E log (¢(e '2”)) +[Rez] with ¢(e?7%) = 27¢(2),

The kernel K, of the projection from L?(w) onto AZ(w) equals

. 2n+n/m i2m(n—1)+1)(p(2)—p(w))
Ky(z,w) = K(z, W)Z 2m(p2ntn/m — p—2n—n/ﬂ)e RERTE.
neZ
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The kernel K, of the projection from L?(w) onto A (w) equals

% 2n+77/7r i(2m(n—1)+ z)—o(w)
Ko(z,w) = K(z,w) 3 TR (T = g or(n—1)+n)((2) (W)
nez

We combine the previous kernel formula with the earlier general one:

Kn(z,w) = Meﬂ'h(w(z)*m)) / %eizm(@(z)w(w))dt.
’ T p t __ p— t

There holds the integral formula (Fourier transform)

t —ist g _ t st g L o 1 2(TS
/ECSCh(at)e dt—/me dt—@ﬂ' sech (Z),

where s € R and a > 0 is a parameter and csch denotes the hyperbolic
cosecant.
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Kernel Kn

We obtain

If the periodic domain I is simply connected then its Bergman kernel
equals

_ S (e(z) — p(w))
Kn(z,w) = Kn(z, W)mbedl ( 2logp )’

where

RI'I (Z, W) = e"27T(Z*4P(Z)*W+m)¢/(ei2ﬂz)m

For the strip ¥ = (—00,00) x (—m, 7) the Bergman kernel can be
computed and it is known to be

Ks(z,w) = %sech%(z —w)/4)

which coincides with the above formula in this special case.
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Weighted LP-estimate

Application: a boundedness result for the Bergman projection with
respect to certain weighted LP-norms. Let us consider continuous weights
W : M — R* which only depend on the real part of the variable z € I.
We assume that there are constants a, C > 0 and 0 < b < 1 such that
forallxeR, neZ

%W(X)e-a\"l” < |W(x + n)| < CW(x)e?!", (1)

Let W : 1 — RT be a weight as above and 1 < p < co. Then, the
projection operator Pp : L}, (M) — LY, (M) is bounded.
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FINALE

Thank you for your attention!
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