

Tensor series in Banach spaces

Jochen Wengenroth

Valencia, 19 June 2025

1955 Big bangs in Functional Analysis

Multi Face Blender

1955 Big bangs in Functional Analysis

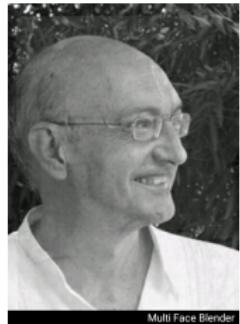
1955 Big bangs in Functional Analysis

1955 Big bangs in Functional Analysis

1955 Big bangs in Functional Analysis

1955 Big bangs in Functional Analysis

1955 Big bangs in Functional Analysis



Tensor products for tired functional analysts

Tensor products for tired functional analysts

- $F = \mathcal{F}(\Omega)$ vector space of functions $\Omega \rightarrow \mathbb{K}$, X vector space, $f \otimes x : \Omega \rightarrow X$,
 $\omega \mapsto f(\omega)x$,

Tensor products for tired functional analysts

- $F = \mathcal{F}(\Omega)$ vector space of functions $\Omega \rightarrow \mathbb{K}$, X vector space, $f \otimes x : \Omega \rightarrow X$,
 $\omega \mapsto f(\omega)x$, $F \otimes X = \text{span}\{f \otimes x : f \in F, x \in X\} \subseteq \mathcal{F}(\Omega, X)$

Tensor products for tired functional analysts

- $F = \mathcal{F}(\Omega)$ vector space of functions $\Omega \rightarrow \mathbb{K}$, X vector space, $f \otimes x : \Omega \rightarrow X$, $\omega \mapsto f(\omega)x$, $F \otimes X = \text{span}\{f \otimes x : f \in F, x \in X\} \subseteq \mathcal{F}(\Omega, X)$
- $\otimes : F \times X \rightarrow F \otimes X$ is **bilinear** with the following universal property:

$$\begin{array}{ccc} F \times X & \xrightarrow{\varphi \text{ bilinear}} & Y \\ \otimes \downarrow & \nearrow \exists_1 \Phi \text{ linear} & \\ F \otimes X & & \end{array}$$

Tensor products for tired functional analysts

- $F = \mathcal{F}(\Omega)$ vector space of functions $\Omega \rightarrow \mathbb{K}$, X vector space, $f \otimes x : \Omega \rightarrow X$, $\omega \mapsto f(\omega)x$, $F \otimes X = \text{span}\{f \otimes x : f \in F, x \in X\} \subseteq \mathcal{F}(\Omega, X)$
- $\otimes : F \times X \rightarrow F \otimes X$ is **bilinear** with the following universal property:

$$\begin{array}{ccc} F \times X & \xrightarrow{\varphi \text{ bilinear}} & Y \\ \otimes \downarrow & \nearrow \exists_1 \Phi \text{ linear} & \\ F \otimes X & & \end{array}$$

- This makes \otimes a **functor** $\text{VEC} \times \text{VEC} \rightarrow \text{VEC}$: $S : F \rightarrow \tilde{F}$, $T : X \rightarrow \tilde{X} \rightsquigarrow S \otimes T : F \otimes X \rightarrow \tilde{F} \otimes \tilde{X}$

Tensor products for tired functional analysts

- $F = \mathcal{F}(\Omega)$ vector space of functions $\Omega \rightarrow \mathbb{K}$, X vector space, $f \otimes x : \Omega \rightarrow X$, $\omega \mapsto f(\omega)x$, $F \otimes X = \text{span}\{f \otimes x : f \in F, x \in X\} \subseteq \mathcal{F}(\Omega, X)$
- $\otimes : F \times X \rightarrow F \otimes X$ is **bilinear** with the following universal property:

$$\begin{array}{ccc} F \times X & \xrightarrow{\varphi \text{ bilinear}} & Y \\ \otimes \downarrow & \nearrow \exists_1 \Phi \text{ linear} & \\ F \otimes X & & \end{array}$$

- This makes \otimes a **functor** $\text{VEC} \times \text{VEC} \rightarrow \text{VEC}$: $S : F \rightarrow \tilde{F}$, $T : X \rightarrow \tilde{X} \rightsquigarrow S \otimes T : F \otimes X \rightarrow \tilde{F} \otimes \tilde{X}$
- $\mathcal{L}(F \otimes X, Y) \cong \text{Bil}(F \times X, Y) \cong \mathcal{L}(X, L(F, Y))$, $\varphi \mapsto T$ with $T(x)(f) = \varphi(f, x)$

Tensor products for tired functional analysts

- $F = \mathcal{F}(\Omega)$ vector space of functions $\Omega \rightarrow \mathbb{K}$, X vector space, $f \otimes x : \Omega \rightarrow X$, $\omega \mapsto f(\omega)x$, $F \otimes X = \text{span}\{f \otimes x : f \in F, x \in X\} \subseteq \mathcal{F}(\Omega, X)$
- $\otimes : F \times X \rightarrow F \otimes X$ is **bilinear** with the following universal property:

$$\begin{array}{ccc} F \times X & \xrightarrow{\varphi \text{ bilinear}} & Y \\ \otimes \downarrow & \nearrow \exists_1 \Phi \text{ linear} & \\ F \otimes X & & \end{array}$$

- This makes \otimes a **functor** $\text{VEC} \times \text{VEC} \rightarrow \text{VEC}$: $S : F \rightarrow \tilde{F}$, $T : X \rightarrow \tilde{X} \rightsquigarrow S \otimes T : F \otimes X \rightarrow \tilde{F} \otimes \tilde{X}$
- $\mathcal{L}(F \otimes X, Y) \cong \text{Bil}(F \times X, Y) \cong \mathcal{L}(X, \mathcal{L}(F, Y))$, $\varphi \mapsto T$ with $T(x)(f) = \varphi(f, x)$
- The functor $F \otimes -$ is LEFT ADJOINT to $\mathcal{L}(F, -)$ in VEC

Tensor products for tired functional analysts

- $F = \mathcal{F}(\Omega)$ vector space of functions $\Omega \rightarrow \mathbb{K}$, X vector space, $f \otimes x : \Omega \rightarrow X$, $\omega \mapsto f(\omega)x$, $F \otimes X = \text{span}\{f \otimes x : f \in F, x \in X\} \subseteq \mathcal{F}(\Omega, X)$
- $\otimes : F \times X \rightarrow F \otimes X$ is **bilinear** with the following universal property:

$$\begin{array}{ccc} F \times X & \xrightarrow{\varphi \text{ bilinear}} & Y \\ \otimes \downarrow & \nearrow \exists_1 \Phi \text{ linear} & \\ F \otimes X & & \end{array}$$

- This makes \otimes a **functor** $\text{VEC} \times \text{VEC} \rightarrow \text{VEC}$: $S : F \rightarrow \tilde{F}$, $T : X \rightarrow \tilde{X} \rightsquigarrow S \otimes T : F \otimes X \rightarrow \tilde{F} \otimes \tilde{X}$
- $\mathcal{L}(F \otimes X, Y) \cong \text{Bil}(F \times X, Y) \cong \mathcal{L}(X, L(F, Y))$, $\varphi \mapsto T$ with $T(x)(f) = \varphi(f, x)$
- The functor $F \otimes -$ is LEFT ADJOINT to $\mathcal{L}(F, -)$ in VEC
- F Banach space, **possible definition**: $F \hat{\otimes}_\pi -$ left adjoint to $L(F, -)$ in BAN

Tensor products for tired functional analysts

- $F = \mathcal{F}(\Omega)$ vector space of functions $\Omega \rightarrow \mathbb{K}$, X vector space, $f \otimes x : \Omega \rightarrow X$, $\omega \mapsto f(\omega)x$, $F \otimes X = \text{span}\{f \otimes x : f \in F, x \in X\} \subseteq \mathcal{F}(\Omega, X)$
- $\otimes : F \times X \rightarrow F \otimes X$ is **bilinear** with the following universal property:

$$\begin{array}{ccc} F \times X & \xrightarrow{\varphi \text{ bilinear}} & Y \\ \otimes \downarrow & \nearrow \exists_1 \Phi \text{ linear} & \\ F \otimes X & & \end{array}$$

- This makes \otimes a **functor** $\text{VEC} \times \text{VEC} \rightarrow \text{VEC}$: $S : F \rightarrow \tilde{F}$, $T : X \rightarrow \tilde{X} \rightsquigarrow S \otimes T : F \otimes X \rightarrow \tilde{F} \otimes \tilde{X}$
- $\mathcal{L}(F \otimes X, Y) \cong \text{Bil}(F \times X, Y) \cong \mathcal{L}(X, L(F, Y))$, $\varphi \mapsto T$ with $T(x)(f) = \varphi(f, x)$
- The functor $F \otimes -$ is LEFT ADJOINT to $\mathcal{L}(F, -)$ in VEC
- F Banach space, **possible definition**: $F \hat{\otimes}_\pi -$ left adjoint to $L(F, -)$ in BAN
- **Concrete (Grothendieck)**: $\pi(x) = \inf \left\{ \sum_{k=1}^n \|f_k\| \|x_k\| : u = \sum_{k=1}^n f_k \otimes x_k \right\}$ projective tensor norm. $F \hat{\otimes}_\pi X$ completion of (the barrelled space) $(F \otimes X, \pi)$.

Tensor products for tired functional analysts

- $F = \mathcal{F}(\Omega)$ vector space of functions $\Omega \rightarrow \mathbb{K}$, X vector space, $f \otimes x : \Omega \rightarrow X$, $\omega \mapsto f(\omega)x$, $F \otimes X = \text{span}\{f \otimes x : f \in F, x \in X\} \subseteq \mathcal{F}(\Omega, X)$
- $\otimes : F \times X \rightarrow F \otimes X$ is **bilinear** with the following universal property:

$$\begin{array}{ccc} F \times X & \xrightarrow{\varphi \text{ bilinear}} & Y \\ \otimes \downarrow & \nearrow \exists_1 \Phi \text{ linear} & \\ F \otimes X & & \end{array}$$

- This makes \otimes a **functor** $\text{VEC} \times \text{VEC} \rightarrow \text{VEC}$: $S : F \rightarrow \tilde{F}$, $T : X \rightarrow \tilde{X} \rightsquigarrow S \otimes T : F \otimes X \rightarrow \tilde{F} \otimes \tilde{X}$
- $\mathcal{L}(F \otimes X, Y) \cong \text{Bil}(F \times X, Y) \cong \mathcal{L}(X, L(F, Y))$, $\varphi \mapsto T$ with $T(x)(f) = \varphi(f, x)$
- The functor $F \otimes -$ is LEFT ADJOINT to $\mathcal{L}(F, -)$ in VEC
- F Banach space, **possible definition**: $F \hat{\otimes}_\pi X$ – left adjoint to $L(F, -)$ in BAN
- **Concrete (Grothendieck)**: $\pi(x) = \inf \left\{ \sum_{k=1}^n \|f_k\| \|x_k\| : u = \sum_{k=1}^n f_k \otimes x_k \right\}$ projective tensor norm. $F \hat{\otimes}_\pi X$ completion of (the barrelled space) $(F \otimes X, \pi)$.

Theorem (GROTHENDIECK)

Every element $u \in F \hat{\otimes}_\pi X$ is of the form $u = \sum_{n=1}^{\infty} f_n \otimes x_n$ with $f_n \in F$ and $x_n \in X$.

Tensor products for tired functional analysts

- $F = \mathcal{F}(\Omega)$ vector space of functions $\Omega \rightarrow \mathbb{K}$, X vector space, $f \otimes x : \Omega \rightarrow X$, $\omega \mapsto f(\omega)x$, $F \otimes X = \text{span}\{f \otimes x : f \in F, x \in X\} \subseteq \mathcal{F}(\Omega, X)$
- $\otimes : F \times X \rightarrow F \otimes X$ is **bilinear** with the following universal property:

$$\begin{array}{ccc} F \times X & \xrightarrow{\varphi \text{ bilinear}} & Y \\ \otimes \downarrow & \nearrow \exists_1 \Phi \text{ linear} & \\ F \otimes X & & \end{array}$$

- This makes \otimes a **functor** $\text{VEC} \times \text{VEC} \rightarrow \text{VEC}$: $S : F \rightarrow \tilde{F}$, $T : X \rightarrow \tilde{X} \rightsquigarrow S \otimes T : F \otimes X \rightarrow \tilde{F} \otimes \tilde{X}$
- $\mathcal{L}(F \otimes X, Y) \cong \text{Bil}(F \times X, Y) \cong \mathcal{L}(X, L(F, Y))$, $\varphi \mapsto T$ with $T(x)(f) = \varphi(f, x)$
- The functor $F \otimes -$ is LEFT ADJOINT to $\mathcal{L}(F, -)$ in VEC
- F Banach space, **possible definition**: $F \hat{\otimes}_\pi -$ left adjoint to $L(F, -)$ in BAN
- **Concrete (Grothendieck)**: $\pi(x) = \inf \left\{ \sum_{k=1}^n \|f_k\| \|x_k\| : u = \sum_{k=1}^n f_k \otimes x_k \right\}$ projective tensor norm. $F \hat{\otimes}_\pi X$ completion of (the barrelled space) $(F \otimes X, \pi)$.

Theorem (GROTHENDIECK)

Every element $u \in F \hat{\otimes}_\pi X$ is of the form $u = \sum_{n=1}^{\infty} f_n \otimes x_n$ with $f_n \in F$ and $x_n \in X$.

However, $C(K) \hat{\otimes}_\pi X$ much smaller than $C(K, X)$.

Other tensor norms

- $F \times X \rightarrow L(F', X)$ $(f, x) \mapsto (\Phi \mapsto \Phi(f)x)$ bilinear yields $F \otimes X \hookrightarrow L(F', X)$

Other tensor norms

- ▶ $F \times X \rightarrow L(F', X)$ $(f, x) \mapsto (\Phi \mapsto \Phi(f)x)$ bilinear yields $F \otimes X \hookrightarrow L(F', X)$
- ▶ **injective norm** $\varepsilon(u) = \sup\{|u(\Phi)| : \Phi \in F', \|\Phi\|^* \leq 1\}$

Other tensor norms

- ▶ $F \times X \rightarrow L(F', X)$ $(f, x) \mapsto (\Phi \mapsto \Phi(f)x)$ bilinear yields $F \otimes X \hookrightarrow L(F', X)$
- ▶ **injective norm** $\varepsilon(u) = \sup\{|u(\Phi)| : \Phi \in F', \|\Phi\|^* \leq 1\}$
- ▶ $F \hat{\otimes}_{\varepsilon} X$ completion of $(F \otimes X, \varepsilon)$. GROTHENDIECK: $C(K) \hat{\otimes}_{\varepsilon} X \cong C(K, X)$.

Other tensor norms

- ▶ $F \times X \rightarrow L(F', X)$ $(f, x) \mapsto (\Phi \mapsto \Phi(f)x)$ bilinear yields $F \otimes X \hookrightarrow L(F', X)$
- ▶ **injective norm** $\varepsilon(u) = \sup\{|u(\Phi)| : \Phi \in F', \|\Phi\|^* \leq 1\}$
- ▶ $F \hat{\otimes}_\varepsilon X$ completion of $(F \otimes X, \varepsilon)$. GROTHENDIECK: $C(K) \hat{\otimes}_\varepsilon X \cong C(K, X)$.
- ▶ Raymond A. RYAN: **Unlike the projective tensor product, there is no general representation of the elements of the completed tensor product $F \hat{\otimes}_\varepsilon X$.**

Other tensor norms

- ▶ $F \times X \rightarrow L(F', X)$ $(f, x) \mapsto (\Phi \mapsto \Phi(f)x)$ bilinear yields $F \otimes X \hookrightarrow L(F', X)$
- ▶ **injective norm** $\varepsilon(u) = \sup\{|u(\Phi)| : \Phi \in F', \|\Phi\|^* \leq 1\}$
- ▶ $F \hat{\otimes}_\varepsilon X$ completion of $(F \otimes X, \varepsilon)$. GROTHENDIECK: $C(K) \hat{\otimes}_\varepsilon X \cong C(K, X)$.
- ▶ Raymond A. RYAN: **Unlike the projective tensor product, there is no general representation of the elements of the completed tensor product $F \hat{\otimes}_\varepsilon X$.**
- ▶ Several known results, e.g., if F and X have Schauder bases.

Other tensor norms

- ▶ $F \times X \rightarrow L(F', X)$ $(f, x) \mapsto (\Phi \mapsto \Phi(f)x)$ bilinear yields $F \otimes X \hookrightarrow L(F', X)$
- ▶ **injective norm** $\varepsilon(u) = \sup\{|u(\Phi)| : \Phi \in F', \|\Phi\|^* \leq 1\}$
- ▶ $F \hat{\otimes}_\varepsilon X$ completion of $(F \otimes X, \varepsilon)$. GROTHENDIECK: $C(K) \hat{\otimes}_\varepsilon X \cong C(K, X)$.
- ▶ Raymond A. RYAN: **Unlike the projective tensor product, there is no general representation of the elements of the completed tensor product $F \hat{\otimes}_\varepsilon X$.**
- ▶ Several known results, e.g., if F and X have Schauder bases.

Theorem

For every norm α on $F \otimes X$, every $u \in F \hat{\otimes}_\alpha X$ has a representation $u = \sum_{n=1}^{\infty} f_n \otimes x_n$.

Other tensor norms

- ▶ $F \times X \rightarrow L(F', X)$ $(f, x) \mapsto (\Phi \mapsto \Phi(f)x)$ bilinear yields $F \otimes X \hookrightarrow L(F', X)$
- ▶ injective norm $\varepsilon(u) = \sup\{|u(\Phi)| : \Phi \in F', \|\Phi\|^* \leq 1\}$
- ▶ $F \hat{\otimes}_\varepsilon X$ completion of $(F \otimes X, \varepsilon)$. GROTHENDIECK: $C(K) \hat{\otimes}_\varepsilon X \cong C(K, X)$.
- ▶ Raymond A. RYAN: Unlike the projective tensor product, there is no general representation of the elements of the completed tensor product $F \hat{\otimes}_\varepsilon X$.
- ▶ Several known results, e.g., if F and X have Schauder bases.

Theorem

For every norm α on $F \otimes X$, every $u \in F \hat{\otimes}_\alpha X$ has a representation $u = \sum_{n=1}^{\infty} f_n \otimes x_n$.

Fool your students: **Claim.** Every $f \in C[0, 1]$ is represented by a power series.

Other tensor norms

- ▶ $F \times X \rightarrow L(F', X)$ $(f, x) \mapsto (\Phi \mapsto \Phi(f)x)$ bilinear yields $F \otimes X \hookrightarrow L(F', X)$
- ▶ injective norm $\varepsilon(u) = \sup\{|u(\Phi)| : \Phi \in F', \|\Phi\|^* \leq 1\}$
- ▶ $F \hat{\otimes}_\varepsilon X$ completion of $(F \otimes X, \varepsilon)$. GROTHENDIECK: $C(K) \hat{\otimes}_\varepsilon X \cong C(K, X)$.
- ▶ Raymond A. RYAN: Unlike the projective tensor product, there is no general representation of the elements of the completed tensor product $F \hat{\otimes}_\varepsilon X$.
- ▶ Several known results, e.g., if F and X have Schauder bases.

Theorem

For every norm α on $F \otimes X$, every $u \in F \hat{\otimes}_\alpha X$ has a representation $u = \sum_{n=1}^{\infty} f_n \otimes x_n$.

Fool your students: **Claim.** Every $f \in C[0, 1]$ is represented by a power series.

- ▶ Weierstraß $\left| f(x) - \sum_{k=0}^{m(1)} c_k x^k \right| < 1/2$ uniformly on $[0, 1]$, $c_0 = f(0)$.

Other tensor norms

- ▶ $F \times X \rightarrow L(F', X)$ $(f, x) \mapsto (\Phi \mapsto \Phi(f)x)$ bilinear yields $F \otimes X \hookrightarrow L(F', X)$
- ▶ injective norm $\varepsilon(u) = \sup\{|u(\Phi)| : \Phi \in F', \|\Phi\|^* \leq 1\}$
- ▶ $F \hat{\otimes}_\varepsilon X$ completion of $(F \otimes X, \varepsilon)$. GROTHENDIECK: $C(K) \hat{\otimes}_\varepsilon X \cong C(K, X)$.
- ▶ Raymond A. RYAN: Unlike the projective tensor product, there is no general representation of the elements of the completed tensor product $F \hat{\otimes}_\varepsilon X$.
- ▶ Several known results, e.g., if F and X have Schauder bases.

Theorem

For every norm α on $F \otimes X$, every $u \in F \hat{\otimes}_\alpha X$ has a representation $u = \sum_{n=1}^{\infty} f_n \otimes x_n$.

Fool your students: **Claim.** Every $f \in C[0, 1]$ is represented by a power series.

- ▶ Weierstraß $\left| f(x) - \sum_{k=0}^{m(1)} c_k x^k \right| < 1/2$ uniformly on $[0, 1]$, $c_0 = f(0)$.
- ▶ Stone-Weierstraß $\left| f(x) - \sum_{k=0}^{m(1)} c_k x^k - \sum_{k=m(1)+1}^{m(2)} c_k x^k \right| < 1/4$ uniformly on $[0, 1]$

Other tensor norms

- ▶ $F \times X \rightarrow L(F', X)$ $(f, x) \mapsto (\Phi \mapsto \Phi(f)x)$ bilinear yields $F \otimes X \hookrightarrow L(F', X)$
- ▶ injective norm $\varepsilon(u) = \sup\{|u(\Phi)| : \Phi \in F', \|\Phi\|^* \leq 1\}$
- ▶ $F \hat{\otimes}_\varepsilon X$ completion of $(F \otimes X, \varepsilon)$. GROTHENDIECK: $C(K) \hat{\otimes}_\varepsilon X \cong C(K, X)$.
- ▶ Raymond A. RYAN: Unlike the projective tensor product, there is no general representation of the elements of the completed tensor product $F \hat{\otimes}_\varepsilon X$.
- ▶ Several known results, e.g., if F and X have Schauder bases.

Theorem

For every norm α on $F \otimes X$, every $u \in F \hat{\otimes}_\alpha X$ has a representation $u = \sum_{n=1}^{\infty} f_n \otimes x_n$.

Fool your students: **Claim.** Every $f \in C[0, 1]$ is represented by a power series.

- ▶ Weierstraß $\left| f(x) - \sum_{k=0}^{m(1)} c_k x^k \right| < 1/2$ uniformly on $[0, 1]$, $c_0 = f(0)$.
- ▶ Stone-Weierstraß $\left| f(x) - \sum_{k=0}^{m(1)} c_k x^k - \sum_{k=m(1)+1}^{m(2)} c_k x^k \right| < 1/4$ uniformly on $[0, 1]$
- ▶ Stone-Weierstraß $\left| f(x) - \sum_{k=0}^{m(n)} c_k x^k \right| < 1/2^n$ uniformly on $[0, 1]$. □

Theorem

For every norm α on $F \otimes X$, every $u \in F \hat{\otimes}_{\alpha} X$ has a representation $u = \sum_{n=1}^{\infty} f_n \otimes x_n$.

Theorem

For every norm α on $F \otimes X$, every $u \in F \hat{\otimes}_{\alpha} X$ has a representation $u = \sum_{n=1}^{\infty} f_n \otimes x_n$.

- ▶ Successive approximation: $u = \sum_{n=1}^{\infty} v_n$ with $v_n \in F \otimes X$ such that $\sum_{n=1}^{\infty} \alpha(v_n) < \infty$.

Theorem

For every norm α on $F \otimes X$, every $u \in F \hat{\otimes}_{\alpha} X$ has a representation $u = \sum_{n=1}^{\infty} f_n \otimes x_n$.

- ▶ Successive approximation: $u = \sum_{n=1}^{\infty} v_n$ with $v_n \in F \otimes X$ such that $\sum_{n=1}^{\infty} \alpha(v_n) < \infty$.
- ▶ Represent $v_n = \sum_{k=m(n-1)+1}^{m(n)} f_k \otimes x_k$. Set $S_m = \sum_{k=1}^m f_k \otimes x_k$.

Theorem

For every norm α on $F \otimes X$, every $u \in F \hat{\otimes}_{\alpha} X$ has a representation $u = \sum_{n=1}^{\infty} f_n \otimes x_n$.

- ▶ Successive approximation: $u = \sum_{n=1}^{\infty} v_n$ with $v_n \in F \otimes X$ such that $\sum_{n=1}^{\infty} \alpha(v_n) < \infty$.
- ▶ Represent $v_n = \sum_{k=m(n-1)+1}^{m(n)} f_k \otimes x_k$. Set $S_m = \sum_{k=1}^m f_k \otimes x_k$.
- ▶ The **subsequence** $S_{m(n)} = \sum_{\ell=1}^n v_{\ell}$ converges to u but S_m may not converge.

Theorem

For every norm α on $F \otimes X$, every $u \in F \hat{\otimes}_{\alpha} X$ has a representation $u = \sum_{n=1}^{\infty} f_n \otimes x_n$.

- ▶ Successive approximation: $u = \sum_{n=1}^{\infty} v_n$ with $v_n \in F \otimes X$ such that $\sum_{n=1}^{\infty} \alpha(v_n) < \infty$.
- ▶ Represent $v_n = \sum_{k=m(n-1)+1}^{m(n)} f_k \otimes x_k$. Set $S_m = \sum_{k=1}^m f_k \otimes x_k$.
- ▶ The **subsequence** $S_{m(n)} = \sum_{\ell=1}^n v_{\ell}$ converges to u but S_m may not converge.
- ▶ IF the representation of v_n above can be chosen such that
$$\alpha \left(\sum_{k=m(n-1)+1}^p f_k \otimes x_k \right) \leq 2\alpha(v_n) \text{ for all } m(n-1) < p \leq m(n)$$
 THEN S_m converges to u (write $m = m(n) + p$)

Theorem

For every norm α on $F \otimes X$, every $u \in F \hat{\otimes}_\alpha X$ has a representation $u = \sum_{n=1}^{\infty} f_n \otimes x_n$.

- ▶ Successive approximation: $u = \sum_{n=1}^{\infty} v_n$ with $v_n \in F \otimes X$ such that $\sum_{n=1}^{\infty} \alpha(v_n) < \infty$.
- ▶ Represent $v_n = \sum_{k=m(n-1)+1}^{m(n)} f_k \otimes x_k$. Set $S_m = \sum_{k=1}^m f_k \otimes x_k$.
- ▶ The **subsequence** $S_{m(n)} = \sum_{\ell=1}^n v_\ell$ converges to u but S_m may not converge.
- ▶ IF the representation of v_n above can be chosen such that
$$\alpha \left(\sum_{k=m(n-1)+1}^p f_k \otimes x_k \right) \leq 2\alpha(v_n) \text{ for all } m(n-1) < p \leq m(n)$$
 THEN S_m converges to u (write $m = m(n) + p$)

Lemma

For every norm α on $F \otimes X$, every $v \in F \otimes X$ has a representation $v = \sum_{k=1}^M f_k \otimes x_k$ such that $\alpha \left(\sum_{k=1}^p f_k \otimes x_k \right) \leq 2\alpha(v)$ for all $1 \leq p \leq M$.

Theorem

For every norm α on $F \otimes X$, every $u \in F \hat{\otimes}_\alpha X$ has a representation $u = \sum_{n=1}^{\infty} f_n \otimes x_n$.

- ▶ Successive approximation: $u = \sum_{n=1}^{\infty} v_n$ with $v_n \in F \otimes X$ such that $\sum_{n=1}^{\infty} \alpha(v_n) < \infty$.
- ▶ Represent $v_n = \sum_{k=m(n-1)+1}^{m(n)} f_k \otimes x_k$. Set $S_m = \sum_{k=1}^m f_k \otimes x_k$.
- ▶ The **subsequence** $S_{m(n)} = \sum_{\ell=1}^n v_\ell$ converges to u but S_m may not converge.
- ▶ IF the representation of v_n above can be chosen such that
$$\alpha \left(\sum_{k=m(n-1)+1}^p f_k \otimes x_k \right) \leq 2\alpha(v_n) \text{ for all } m(n-1) < p \leq m(n)$$
 THEN S_m converges to u (write $m = m(n) + p$)

Lemma

For every norm α on $F \otimes X$, every $v \in F \otimes X$ has a representation $v = \sum_{k=1}^M f_k \otimes x_k$ such that $\alpha \left(\sum_{k=1}^p f_k \otimes x_k \right) \leq 2\alpha(v)$ for all $1 \leq p \leq M$.

Remark. For the projective norm this holds if $\sum_{k=1}^M \|f_k\| \|x_k\| \leq 2\pi(v)$. This proves Grothendieck's theorem even with absolute convergence of the tensor series.

Lemma

For every norm α on $F \otimes X$, every $v \in F \otimes X$ has a representation $v = \sum_{k=1}^M f_k \otimes x_k$ such that $\alpha\left(\sum_{k=1}^p f_k \otimes x_k\right) \leq 2\alpha(v)$ for all $1 \leq p \leq M$.

Lemma

For every norm α on $F \otimes X$, every $v \in F \otimes X$ has a representation $v = \sum_{k=1}^M f_k \otimes x_k$ such that $\alpha\left(\sum_{k=1}^p f_k \otimes x_k\right) \leq 2\alpha(v)$ for all $1 \leq p \leq M$.

- ▶ Take any representation $v = \sum_{j=1}^n g_j \otimes y_j$. **PELCZYŃSKI trick:**

Lemma

For every norm α on $F \otimes X$, every $v \in F \otimes X$ has a representation $v = \sum_{k=1}^M f_k \otimes x_k$

such that $\alpha \left(\sum_{k=1}^p f_k \otimes x_k \right) \leq 2\alpha(v)$ for all $1 \leq p \leq M$.

- Take any representation $v = \sum_{j=1}^n g_j \otimes y_j$. **PELCZYŃSKI trick:** $v = \sum_{\ell=1}^N \frac{1}{N} v$.

Lemma

For every norm α on $F \otimes X$, every $v \in F \otimes X$ has a representation $v = \sum_{k=1}^M f_k \otimes x_k$

such that $\alpha \left(\sum_{k=1}^p f_k \otimes x_k \right) \leq 2\alpha(v)$ for all $1 \leq p \leq M$.

► Take any representation $v = \sum_{j=1}^n g_j \otimes y_j$. **PELCZYŃSKI trick:** $v = \sum_{\ell=1}^N \frac{1}{N} v$.

►

$$\begin{aligned} v &= \frac{1}{N} g_1 \otimes y_1 + \cdots + \frac{1}{N} g_n \otimes y_n \\ &\quad + \cdots \cdots \\ &\quad + \cdots \cdots \\ &\quad + \frac{1}{N} g_1 \otimes y_1 + \cdots + \frac{1}{N} g_n \otimes y_n \end{aligned}$$

Lemma

For every norm α on $F \otimes X$, every $v \in F \otimes X$ has a representation $v = \sum_{k=1}^M f_k \otimes x_k$

such that $\alpha \left(\sum_{k=1}^p f_k \otimes x_k \right) \leq 2\alpha(v)$ for all $1 \leq p \leq M$.

► Take any representation $v = \sum_{j=1}^n g_j \otimes y_j$. **PELCZYŃSKI trick:** $v = \sum_{\ell=1}^N \frac{1}{N} v$.

►

$$\begin{aligned} v &= \frac{1}{N} g_1 \otimes y_1 + \cdots + \frac{1}{N} g_n \otimes y_n \\ &\quad + \cdots \cdots \\ &\quad + \cdots \cdots \\ &\quad + \frac{1}{N} g_1 \otimes y_1 + \cdots + \frac{1}{N} g_n \otimes y_n \end{aligned}$$

► Put $M = nN$ and rename the elementary tensors row by row $f_k \otimes x_k$.

Lemma

For every norm α on $F \otimes X$, every $v \in F \otimes X$ has a representation $v = \sum_{k=1}^M f_k \otimes x_k$

such that $\alpha \left(\sum_{k=1}^p f_k \otimes x_k \right) \leq 2\alpha(v)$ for all $1 \leq p \leq M$.

► Take any representation $v = \sum_{j=1}^n g_j \otimes y_j$. **PELCZYŃSKI trick:** $v = \sum_{\ell=1}^N \frac{1}{N} v$.

►

$$\begin{aligned} v &= \frac{1}{N} g_1 \otimes y_1 + \cdots + \frac{1}{N} g_n \otimes y_n \\ &\quad + \cdots \\ &\quad + \cdots f_p \otimes x_p \cdots \\ &\quad + \frac{1}{N} g_1 \otimes y_1 + \cdots + \frac{1}{N} g_n \otimes y_n \end{aligned}$$

► Put $M = nN$ and rename the elementary tensors row by row $f_k \otimes x_k$.

► $p = qn + r$ with $0 \leq r < n$. Then $\sum_{k=1}^p f_k \otimes x_k = \frac{q}{N} v + \frac{1}{N} \sum_{j=1}^r g_j \otimes y_j$

Lemma

For every norm α on $F \otimes X$, every $v \in F \otimes X$ has a representation $v = \sum_{k=1}^M f_k \otimes x_k$

such that $\alpha\left(\sum_{k=1}^p f_k \otimes x_k\right) \leq 2\alpha(v)$ for all $1 \leq p \leq M$.

- ▶ Take any representation $v = \sum_{j=1}^n g_j \otimes y_j$. **PELCZYŃSKI trick:** $v = \sum_{\ell=1}^N \frac{1}{N} v$.

▶

$$\begin{aligned} v &= \frac{1}{N} g_1 \otimes y_1 + \cdots + \frac{1}{N} g_n \otimes y_n \\ &\quad + \cdots \\ &\quad + \cdots f_p \otimes x_p \cdots \\ &\quad + \frac{1}{N} g_1 \otimes y_1 + \cdots + \frac{1}{N} g_n \otimes y_n \end{aligned}$$

- ▶ Put $M = nN$ and rename the elementary tensors row by row $f_k \otimes x_k$.

- ▶ $p = qn + r$ with $0 \leq r < n$. Then $\sum_{k=1}^p f_k \otimes x_k = \frac{q}{N} v + \frac{1}{N} \sum_{j=1}^r g_j \otimes y_j$

▶

$$\alpha\left(\sum_{k=1}^p f_k \otimes x_k\right) \leq \frac{q}{N} \alpha(v) + \frac{1}{N} \sum_{j=1}^r \alpha(g_j \otimes y_j) \leq 2\alpha(v)$$

if $N \geq n \max\{\alpha(g_k \otimes y_k) : 1 \leq k \leq n\}/\alpha(v)$.

► Application: Every $\Phi \in C(K, X)$ (K compact, X Banach) has a representation

$$\Phi(\omega) = \sum_{n=1}^{\infty} f_n(\omega)x_n \text{ with uniform convergence where } f_n \in C(K) \text{ and } x_n \in X.$$

- ▶ Application: Every $\Phi \in C(K, X)$ (K compact, X Banach) has a representation $\Phi(\omega) = \sum_{n=1}^{\infty} f_n(\omega)x_n$ with uniform convergence where $f_n \in C(K)$ and $x_n \in X$.
- ▶ X metrizable locally convex space, $A \subseteq X$ such that $\text{span}(A)$ dense in X . Then every $x \in \hat{X}$ has a representation $x = \sum_{n=1}^{\infty} \lambda_n a_n$ with $\lambda_n \in \mathbb{K}$ and $a_n \in A$.

- ▶ Application: Every $\Phi \in C(K, X)$ (K compact, X Banach) has a representation $\Phi(\omega) = \sum_{n=1}^{\infty} f_n(\omega)x_n$ with uniform convergence where $f_n \in C(K)$ and $x_n \in X$.
- ▶ X metrizable locally convex space, $A \subseteq X$ such that $\text{span}(A)$ dense in X . Then every $x \in \hat{X}$ has a representation $x = \sum_{n=1}^{\infty} \lambda_n a_n$ with $\lambda_n \in \mathbb{K}$ and $a_n \in A$.
- ▶ In general, the series representation is less useful than it looks, e.g., because the series need not converge absolutely.

- ▶ Application: Every $\Phi \in C(K, X)$ (K compact, X Banach) has a representation $\Phi(\omega) = \sum_{n=1}^{\infty} f_n(\omega)x_n$ with uniform convergence where $f_n \in C(K)$ and $x_n \in X$.
- ▶ X metrizable locally convex space, $A \subseteq X$ such that $\text{span}(A)$ dense in X . Then every $x \in \hat{X}$ has a representation $x = \sum_{n=1}^{\infty} \lambda_n a_n$ with $\lambda_n \in \mathbb{K}$ and $a_n \in A$.
- ▶ In general, the series representation is less useful than it looks, e.g., because the series need not converge absolutely.
- ▶ A topic I refrained from talking about: **What is the categorical significance of $F \hat{\otimes}_{\varepsilon} X$?**

- ▶ Application: Every $\Phi \in C(K, X)$ (K compact, X Banach) has a representation $\Phi(\omega) = \sum_{n=1}^{\infty} f_n(\omega)x_n$ with uniform convergence where $f_n \in C(K)$ and $x_n \in X$.
- ▶ X metrizable locally convex space, $A \subseteq X$ such that $\text{span}(A)$ dense in X . Then every $x \in \hat{X}$ has a representation $x = \sum_{n=1}^{\infty} \lambda_n a_n$ with $\lambda_n \in \mathbb{K}$ and $a_n \in A$.
- ▶ In general, the series representation is less useful than it looks, e.g., because the series need not converge absolutely.
- ▶ A topic I refrained from talking about: **What is the categorical significance of $F \hat{\otimes}_{\varepsilon} X$?**
- ▶ For $F = c_0$, the functor $F \hat{\otimes}_{\varepsilon} -$ does not have a left adjoint in BAN, but it does have a left adjoint in CHLCS

- ▶ Application: Every $\Phi \in C(K, X)$ (K compact, X Banach) has a representation $\Phi(\omega) = \sum_{n=1}^{\infty} f_n(\omega)x_n$ with uniform convergence where $f_n \in C(K)$ and $x_n \in X$.
- ▶ X metrizable locally convex space, $A \subseteq X$ such that $\text{span}(A)$ dense in X . Then every $x \in \hat{X}$ has a representation $x = \sum_{n=1}^{\infty} \lambda_n a_n$ with $\lambda_n \in \mathbb{K}$ and $a_n \in A$.
- ▶ In general, the series representation is less useful than it looks, e.g., because the series need not converge absolutely.
- ▶ A topic I refrained from talking about: **What is the categorical significance of $F \hat{\otimes}_{\varepsilon} X$?**
- ▶ For $F = c_0$, the functor $F \hat{\otimes}_{\varepsilon} -$ does not have a left adjoint in BAN, but it does have a left adjoint in CHLCS
- ▶ ...

- ▶ Application: Every $\Phi \in C(K, X)$ (K compact, X Banach) has a representation $\Phi(\omega) = \sum_{n=1}^{\infty} f_n(\omega)x_n$ with uniform convergence where $f_n \in C(K)$ and $x_n \in X$.
- ▶ X metrizable locally convex space, $A \subseteq X$ such that $\text{span}(A)$ dense in X . Then every $x \in \hat{X}$ has a representation $x = \sum_{n=1}^{\infty} \lambda_n a_n$ with $\lambda_n \in \mathbb{K}$ and $a_n \in A$.
- ▶ In general, the series representation is less useful than it looks, e.g., because the series need not converge absolutely.
- ▶ A topic I refrained from talking about: **What is the categorical significance of $F \hat{\otimes}_{\varepsilon} X$?**
- ▶ For $F = c_0$, the functor $F \hat{\otimes}_{\varepsilon} -$ does not have a left adjoint in BAN, but it does have a left adjoint in CHLCS
- ▶ ...

HAPPY BIRTHDAY, PEPE!

