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Tensor products for tired functional analysts

▶ F = F (Ω) vector space of functions Ω → K, X vector space, f ⊗ x : Ω → X ,
ω 7→ f (ω)x ,

F ⊗ X = span{f ⊗ x : f ∈ F , x ∈ X} ⊆ F (Ω,X )

▶ ⊗ : F × X → F ⊗ X is bilinear with the following universal property:

F × X Y

F ⊗ X

φ bilinear

⊗ ∃1 Φ linear

▶ This makes ⊗ a functor VEC × VEC → VEC: S : F → F̃ , T : X → X̃ ⇝
S ⊗ T : F ⊗ X → F̃ ⊗ X̃

▶ L (F ⊗ X ,Y ) ∼= Bil(F × X ,Y ) ∼= L (X , L(F ,Y )), φ 7→ T with
T (x)(f ) = φ(f , x)

▶ The functor F ⊗− is left adjoint to L (F ,−) in VEC
▶ F Banach space, possible definition: F ⊗̂π − left adjoint to L(F ,−) in BAN

▶ Concrete (Grothendieck): π(x) = inf

{
n∑

k=1
∥fk∥∥xk∥ : u =

n∑
k=1

fk ⊗ xk

}
projective

tensor norm. F ⊗̂π X completion of (the barrelled space) (F ⊗ X , π).

Theorem (Grothendieck)

Every element u ∈ F ⊗̂π X is of the form u =
∞∑
n=1

fn ⊗ xn with fn ∈ F and xn ∈ X .

However, C(K) ⊗̂π X much smaller than C(K ,X ).



Tensor products for tired functional analysts
▶ F = F (Ω) vector space of functions Ω → K, X vector space, f ⊗ x : Ω → X ,

ω 7→ f (ω)x ,

F ⊗ X = span{f ⊗ x : f ∈ F , x ∈ X} ⊆ F (Ω,X )
▶ ⊗ : F × X → F ⊗ X is bilinear with the following universal property:

F × X Y

F ⊗ X

φ bilinear

⊗ ∃1 Φ linear

▶ This makes ⊗ a functor VEC × VEC → VEC: S : F → F̃ , T : X → X̃ ⇝
S ⊗ T : F ⊗ X → F̃ ⊗ X̃

▶ L (F ⊗ X ,Y ) ∼= Bil(F × X ,Y ) ∼= L (X , L(F ,Y )), φ 7→ T with
T (x)(f ) = φ(f , x)

▶ The functor F ⊗− is left adjoint to L (F ,−) in VEC
▶ F Banach space, possible definition: F ⊗̂π − left adjoint to L(F ,−) in BAN

▶ Concrete (Grothendieck): π(x) = inf

{
n∑

k=1
∥fk∥∥xk∥ : u =

n∑
k=1

fk ⊗ xk

}
projective

tensor norm. F ⊗̂π X completion of (the barrelled space) (F ⊗ X , π).

Theorem (Grothendieck)

Every element u ∈ F ⊗̂π X is of the form u =
∞∑
n=1

fn ⊗ xn with fn ∈ F and xn ∈ X .

However, C(K) ⊗̂π X much smaller than C(K ,X ).



Tensor products for tired functional analysts
▶ F = F (Ω) vector space of functions Ω → K, X vector space, f ⊗ x : Ω → X ,

ω 7→ f (ω)x , F ⊗ X = span{f ⊗ x : f ∈ F , x ∈ X} ⊆ F (Ω,X )

▶ ⊗ : F × X → F ⊗ X is bilinear with the following universal property:

F × X Y

F ⊗ X

φ bilinear

⊗ ∃1 Φ linear

▶ This makes ⊗ a functor VEC × VEC → VEC: S : F → F̃ , T : X → X̃ ⇝
S ⊗ T : F ⊗ X → F̃ ⊗ X̃

▶ L (F ⊗ X ,Y ) ∼= Bil(F × X ,Y ) ∼= L (X , L(F ,Y )), φ 7→ T with
T (x)(f ) = φ(f , x)

▶ The functor F ⊗− is left adjoint to L (F ,−) in VEC
▶ F Banach space, possible definition: F ⊗̂π − left adjoint to L(F ,−) in BAN

▶ Concrete (Grothendieck): π(x) = inf

{
n∑

k=1
∥fk∥∥xk∥ : u =

n∑
k=1

fk ⊗ xk

}
projective

tensor norm. F ⊗̂π X completion of (the barrelled space) (F ⊗ X , π).

Theorem (Grothendieck)

Every element u ∈ F ⊗̂π X is of the form u =
∞∑
n=1

fn ⊗ xn with fn ∈ F and xn ∈ X .

However, C(K) ⊗̂π X much smaller than C(K ,X ).



Tensor products for tired functional analysts
▶ F = F (Ω) vector space of functions Ω → K, X vector space, f ⊗ x : Ω → X ,

ω 7→ f (ω)x , F ⊗ X = span{f ⊗ x : f ∈ F , x ∈ X} ⊆ F (Ω,X )
▶ ⊗ : F × X → F ⊗ X is bilinear with the following universal property:

F × X Y

F ⊗ X

φ bilinear

⊗ ∃1 Φ linear

▶ This makes ⊗ a functor VEC × VEC → VEC: S : F → F̃ , T : X → X̃ ⇝
S ⊗ T : F ⊗ X → F̃ ⊗ X̃

▶ L (F ⊗ X ,Y ) ∼= Bil(F × X ,Y ) ∼= L (X , L(F ,Y )), φ 7→ T with
T (x)(f ) = φ(f , x)

▶ The functor F ⊗− is left adjoint to L (F ,−) in VEC
▶ F Banach space, possible definition: F ⊗̂π − left adjoint to L(F ,−) in BAN

▶ Concrete (Grothendieck): π(x) = inf

{
n∑

k=1
∥fk∥∥xk∥ : u =

n∑
k=1

fk ⊗ xk

}
projective

tensor norm. F ⊗̂π X completion of (the barrelled space) (F ⊗ X , π).

Theorem (Grothendieck)

Every element u ∈ F ⊗̂π X is of the form u =
∞∑
n=1

fn ⊗ xn with fn ∈ F and xn ∈ X .

However, C(K) ⊗̂π X much smaller than C(K ,X ).



Tensor products for tired functional analysts
▶ F = F (Ω) vector space of functions Ω → K, X vector space, f ⊗ x : Ω → X ,

ω 7→ f (ω)x , F ⊗ X = span{f ⊗ x : f ∈ F , x ∈ X} ⊆ F (Ω,X )
▶ ⊗ : F × X → F ⊗ X is bilinear with the following universal property:

F × X Y

F ⊗ X

φ bilinear

⊗ ∃1 Φ linear

▶ This makes ⊗ a functor VEC × VEC → VEC: S : F → F̃ , T : X → X̃ ⇝
S ⊗ T : F ⊗ X → F̃ ⊗ X̃

▶ L (F ⊗ X ,Y ) ∼= Bil(F × X ,Y ) ∼= L (X , L(F ,Y )), φ 7→ T with
T (x)(f ) = φ(f , x)

▶ The functor F ⊗− is left adjoint to L (F ,−) in VEC
▶ F Banach space, possible definition: F ⊗̂π − left adjoint to L(F ,−) in BAN

▶ Concrete (Grothendieck): π(x) = inf

{
n∑

k=1
∥fk∥∥xk∥ : u =

n∑
k=1

fk ⊗ xk

}
projective

tensor norm. F ⊗̂π X completion of (the barrelled space) (F ⊗ X , π).

Theorem (Grothendieck)

Every element u ∈ F ⊗̂π X is of the form u =
∞∑
n=1

fn ⊗ xn with fn ∈ F and xn ∈ X .

However, C(K) ⊗̂π X much smaller than C(K ,X ).



Tensor products for tired functional analysts
▶ F = F (Ω) vector space of functions Ω → K, X vector space, f ⊗ x : Ω → X ,

ω 7→ f (ω)x , F ⊗ X = span{f ⊗ x : f ∈ F , x ∈ X} ⊆ F (Ω,X )
▶ ⊗ : F × X → F ⊗ X is bilinear with the following universal property:

F × X Y

F ⊗ X

φ bilinear

⊗ ∃1 Φ linear

▶ This makes ⊗ a functor VEC × VEC → VEC: S : F → F̃ , T : X → X̃ ⇝
S ⊗ T : F ⊗ X → F̃ ⊗ X̃

▶ L (F ⊗ X ,Y ) ∼= Bil(F × X ,Y ) ∼= L (X , L(F ,Y )), φ 7→ T with
T (x)(f ) = φ(f , x)

▶ The functor F ⊗− is left adjoint to L (F ,−) in VEC
▶ F Banach space, possible definition: F ⊗̂π − left adjoint to L(F ,−) in BAN

▶ Concrete (Grothendieck): π(x) = inf

{
n∑

k=1
∥fk∥∥xk∥ : u =

n∑
k=1

fk ⊗ xk

}
projective

tensor norm. F ⊗̂π X completion of (the barrelled space) (F ⊗ X , π).

Theorem (Grothendieck)

Every element u ∈ F ⊗̂π X is of the form u =
∞∑
n=1

fn ⊗ xn with fn ∈ F and xn ∈ X .

However, C(K) ⊗̂π X much smaller than C(K ,X ).



Tensor products for tired functional analysts
▶ F = F (Ω) vector space of functions Ω → K, X vector space, f ⊗ x : Ω → X ,

ω 7→ f (ω)x , F ⊗ X = span{f ⊗ x : f ∈ F , x ∈ X} ⊆ F (Ω,X )
▶ ⊗ : F × X → F ⊗ X is bilinear with the following universal property:

F × X Y

F ⊗ X

φ bilinear

⊗ ∃1 Φ linear

▶ This makes ⊗ a functor VEC × VEC → VEC: S : F → F̃ , T : X → X̃ ⇝
S ⊗ T : F ⊗ X → F̃ ⊗ X̃

▶ L (F ⊗ X ,Y ) ∼= Bil(F × X ,Y ) ∼= L (X , L(F ,Y )), φ 7→ T with
T (x)(f ) = φ(f , x)

▶ The functor F ⊗− is left adjoint to L (F ,−) in VEC

▶ F Banach space, possible definition: F ⊗̂π − left adjoint to L(F ,−) in BAN

▶ Concrete (Grothendieck): π(x) = inf

{
n∑

k=1
∥fk∥∥xk∥ : u =

n∑
k=1

fk ⊗ xk

}
projective

tensor norm. F ⊗̂π X completion of (the barrelled space) (F ⊗ X , π).

Theorem (Grothendieck)

Every element u ∈ F ⊗̂π X is of the form u =
∞∑
n=1

fn ⊗ xn with fn ∈ F and xn ∈ X .

However, C(K) ⊗̂π X much smaller than C(K ,X ).



Tensor products for tired functional analysts
▶ F = F (Ω) vector space of functions Ω → K, X vector space, f ⊗ x : Ω → X ,

ω 7→ f (ω)x , F ⊗ X = span{f ⊗ x : f ∈ F , x ∈ X} ⊆ F (Ω,X )
▶ ⊗ : F × X → F ⊗ X is bilinear with the following universal property:

F × X Y

F ⊗ X

φ bilinear

⊗ ∃1 Φ linear

▶ This makes ⊗ a functor VEC × VEC → VEC: S : F → F̃ , T : X → X̃ ⇝
S ⊗ T : F ⊗ X → F̃ ⊗ X̃

▶ L (F ⊗ X ,Y ) ∼= Bil(F × X ,Y ) ∼= L (X , L(F ,Y )), φ 7→ T with
T (x)(f ) = φ(f , x)

▶ The functor F ⊗− is left adjoint to L (F ,−) in VEC
▶ F Banach space, possible definition: F ⊗̂π − left adjoint to L(F ,−) in BAN

▶ Concrete (Grothendieck): π(x) = inf

{
n∑

k=1
∥fk∥∥xk∥ : u =

n∑
k=1

fk ⊗ xk

}
projective

tensor norm. F ⊗̂π X completion of (the barrelled space) (F ⊗ X , π).

Theorem (Grothendieck)

Every element u ∈ F ⊗̂π X is of the form u =
∞∑
n=1

fn ⊗ xn with fn ∈ F and xn ∈ X .

However, C(K) ⊗̂π X much smaller than C(K ,X ).



Tensor products for tired functional analysts
▶ F = F (Ω) vector space of functions Ω → K, X vector space, f ⊗ x : Ω → X ,

ω 7→ f (ω)x , F ⊗ X = span{f ⊗ x : f ∈ F , x ∈ X} ⊆ F (Ω,X )
▶ ⊗ : F × X → F ⊗ X is bilinear with the following universal property:

F × X Y

F ⊗ X

φ bilinear

⊗ ∃1 Φ linear

▶ This makes ⊗ a functor VEC × VEC → VEC: S : F → F̃ , T : X → X̃ ⇝
S ⊗ T : F ⊗ X → F̃ ⊗ X̃

▶ L (F ⊗ X ,Y ) ∼= Bil(F × X ,Y ) ∼= L (X , L(F ,Y )), φ 7→ T with
T (x)(f ) = φ(f , x)

▶ The functor F ⊗− is left adjoint to L (F ,−) in VEC
▶ F Banach space, possible definition: F ⊗̂π − left adjoint to L(F ,−) in BAN

▶ Concrete (Grothendieck): π(x) = inf

{
n∑

k=1
∥fk∥∥xk∥ : u =

n∑
k=1

fk ⊗ xk

}
projective

tensor norm. F ⊗̂π X completion of (the barrelled space) (F ⊗ X , π).

Theorem (Grothendieck)

Every element u ∈ F ⊗̂π X is of the form u =
∞∑
n=1

fn ⊗ xn with fn ∈ F and xn ∈ X .

However, C(K) ⊗̂π X much smaller than C(K ,X ).



Tensor products for tired functional analysts
▶ F = F (Ω) vector space of functions Ω → K, X vector space, f ⊗ x : Ω → X ,

ω 7→ f (ω)x , F ⊗ X = span{f ⊗ x : f ∈ F , x ∈ X} ⊆ F (Ω,X )
▶ ⊗ : F × X → F ⊗ X is bilinear with the following universal property:

F × X Y

F ⊗ X

φ bilinear

⊗ ∃1 Φ linear

▶ This makes ⊗ a functor VEC × VEC → VEC: S : F → F̃ , T : X → X̃ ⇝
S ⊗ T : F ⊗ X → F̃ ⊗ X̃

▶ L (F ⊗ X ,Y ) ∼= Bil(F × X ,Y ) ∼= L (X , L(F ,Y )), φ 7→ T with
T (x)(f ) = φ(f , x)

▶ The functor F ⊗− is left adjoint to L (F ,−) in VEC
▶ F Banach space, possible definition: F ⊗̂π − left adjoint to L(F ,−) in BAN

▶ Concrete (Grothendieck): π(x) = inf

{
n∑

k=1
∥fk∥∥xk∥ : u =

n∑
k=1

fk ⊗ xk

}
projective

tensor norm. F ⊗̂π X completion of (the barrelled space) (F ⊗ X , π).

Theorem (Grothendieck)

Every element u ∈ F ⊗̂π X is of the form u =
∞∑
n=1

fn ⊗ xn with fn ∈ F and xn ∈ X .

However, C(K) ⊗̂π X much smaller than C(K ,X ).



Tensor products for tired functional analysts
▶ F = F (Ω) vector space of functions Ω → K, X vector space, f ⊗ x : Ω → X ,

ω 7→ f (ω)x , F ⊗ X = span{f ⊗ x : f ∈ F , x ∈ X} ⊆ F (Ω,X )
▶ ⊗ : F × X → F ⊗ X is bilinear with the following universal property:

F × X Y

F ⊗ X

φ bilinear

⊗ ∃1 Φ linear

▶ This makes ⊗ a functor VEC × VEC → VEC: S : F → F̃ , T : X → X̃ ⇝
S ⊗ T : F ⊗ X → F̃ ⊗ X̃

▶ L (F ⊗ X ,Y ) ∼= Bil(F × X ,Y ) ∼= L (X , L(F ,Y )), φ 7→ T with
T (x)(f ) = φ(f , x)

▶ The functor F ⊗− is left adjoint to L (F ,−) in VEC
▶ F Banach space, possible definition: F ⊗̂π − left adjoint to L(F ,−) in BAN

▶ Concrete (Grothendieck): π(x) = inf

{
n∑

k=1
∥fk∥∥xk∥ : u =

n∑
k=1

fk ⊗ xk

}
projective

tensor norm. F ⊗̂π X completion of (the barrelled space) (F ⊗ X , π).

Theorem (Grothendieck)

Every element u ∈ F ⊗̂π X is of the form u =
∞∑
n=1

fn ⊗ xn with fn ∈ F and xn ∈ X .

However, C(K) ⊗̂π X much smaller than C(K ,X ).



Other tensor norms

▶ F × X → L(F ′,X ) (f , x) 7→ (Φ 7→ Φ(f )x) bilinear yields F ⊗ X ↪→ L(F ′,X )

▶ injective norm ε(u) = sup{|u(Φ)| : Φ ∈ F ′, ∥Φ∥∗ ≤ 1}
▶ F ⊗̂ε X completion of (F ⊗ X , ε). Grothendieck: C(K) ⊗̂ε X ∼= C(K ,X ).

▶ Raymond A. Ryan: Unlike the projective tensor product, there is no general
representation of the elements of the completed tensor product F ⊗̂ε X .

▶ Several known results, e.g., if F and X have Schauder bases.

Theorem

For every norm α on F ⊗ X , every u ∈ F ⊗̂αX has a representation u =
∞∑
n=1

fn ⊗ xn.

Fool your students: Claim. Every f ∈ C [0, 1] is represented by a power series.

▶ Weierstraß

∣∣∣∣∣f (x)− m(1)∑
k=0

ckx
k

∣∣∣∣∣ < 1/2 uniformly on [0, 1], c0 = f (0).

▶ Stone-Weierstraß

∣∣∣∣∣f (x)− m(1)∑
k=0

ckx
k −

m(2)∑
k=m(1)+1

ckx
k

∣∣∣∣∣ < 1/4 uniformly on [0, 1]

▶ Stone-Weierstraß

∣∣∣∣∣f (x)− m(n)∑
k=0

ckx
k

∣∣∣∣∣ < 1/2n uniformly on [0, 1].
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Theorem

For every norm α on F ⊗ X , every u ∈ F ⊗̂αX has a representation u =
∞∑
n=1

fn ⊗ xn.

▶ Successive approximation: u =
∞∑
n=1

vn with vn ∈ F ⊗ X such that
∞∑
n=1

α(vn) < ∞.

▶ Represent vn =
m(n)∑

k=m(n−1)+1

fk ⊗ xk . Set Sm =
m∑

k=1
fk ⊗ xk .

▶ The subsequence Sm(n) =
n∑

ℓ=1
vℓ converges to u but Sm may not converge.

▶ IF the representation of vn above can be chosen such that

α

(
p∑

k=m(n−1)+1

fk ⊗ xk

)
≤ 2α(vn) for all m(n − 1) < p ≤ m(n) THEN Sm

converges to u (write m = m(n) + p)

Lemma

For every norm α on F ⊗ X , every v ∈ F ⊗ X has a representation v =
M∑
k=1

fk ⊗ xk

such that α

(
p∑

k=1
fk ⊗ xk

)
≤ 2α(v) for all 1 ≤ p ≤ M.

Remark. For the projective norm this holds if
M∑
k=1

∥fk∥∥xk∥ ≤ 2π(v). This proves

Grothendieck’s theorem even with absolute convergence of the tensor series.
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For every norm α on F ⊗ X , every v ∈ F ⊗ X has a representation v =
M∑
k=1

fk ⊗ xk

such that α

(
p∑

k=1
fk ⊗ xk

)
≤ 2α(v) for all 1 ≤ p ≤ M.

▶ Take any representation v =
n∑

j=1
gj ⊗ yj . Pe lczyński trick:

v =
N∑

ℓ=1

1
N v .

▶

v =
1

N
g1 ⊗ y1 + · · ·+

1

N
gn ⊗ yn

+ · · · · · ·
+ · · · · · ·

+
1

N
g1 ⊗ y1 + · · ·+

1

N
gn ⊗ yn

▶ Put M = nN and rename the elementary tensors row by row fk ⊗ xk .

▶ p = qn + r with 0 ≤ r < n. Then
p∑

k=1
fk ⊗ xk = q

N
v + 1

N

r∑
j=1

gj ⊗ yj

▶

α

(
p∑

k=1

fk ⊗ xk

)
≤

q

N
α(v) +

1

N

r∑
j=1

α(gj ⊗ yj ) ≤ 2α(v)

if N ≥ nmax{α(gk ⊗ yk ) : 1 ≤ k ≤ n}/α(v).
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▶ Application: Every Φ ∈ C(K ,X ) (K compact, X Banach) has a representation

Φ(ω) =
∞∑
n=1

fn(ω)xn with uniform convergence where fn ∈ C(K) and xn ∈ X .

▶ X metrizable locally convex space, A ⊆ X such that span(A) dense in X . Then

every x ∈ X̂ has a representation x =
∞∑
n=1

λnan with λn ∈ K and an ∈ A.

▶ In general, the series representation is less useful than it looks, e.g., because the
series need not converge absolutely.

▶ A topic I refrained from talking about: What is the categorical significance of
F ⊗̂ε X?

▶ For F = c0, the functor F ⊗̂ε − does not have a left adjoint in BAN, but it does
have a left adjoint in CHLCS

▶ . . .
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